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Preface

The AFGL cloud droplet model, based on the Khrgian-Mazin (KM) distribution function, was
used for some 20 years to predict the probable cloud situations along the trajectories of missiles

for "weather definition- and nose cone erosion prediction. The intimate association of the KM
function with visibility theory was recognized and used to provide semi-quantitative equations.

The details of the model are described in this report and visibility theory is extended considerably

to define and consider different types of visibility, namely recognition and discernment visibility.

the visual ranges of specific objects and the limiting conditions of maximum atmospheric

seeability in clear-air and cloudy situations.
The KM function further permits predictions in the field(s) of radar/lidar meteorology. The

equation that describes the distribution of the radar reflectivity factor with droplet diameter is

developed, which, on integration, yields the total reflectivity factor. Z (mm'ým 1"). A so-called M vs Z

relation for water clouds is derived which is

M = 4.02 Z° 51 2  gm M .

where M is the cloud liquid water content in g m ". This relation. which depends strictly on the

size distribution properties of the cloud droplets. enables M to be estimated from radar/lidar

measurements of Z.

Actually. there are 20 relationships among cloud physics quantities that are solidly tied

mathematically to the KM distribution function. All 20 have present or potential applications.

which are noted.

In the AFGL weather work mentioned, it was found that cross-disciplinary problems

existed between the fields of cloud physics and precipitation physics that led to mathematical

discontinuities (of various important quantities) across the vague boundary zones of the

separate disciplines. This led to investigations of composite distribution equations that would
"smooth out" the discontinuities. These investigations are recounted and extended to include

aerosols as well.

vii



The effects of lower and upper diameter truination on lit distributed ind totals ,,cqualions

are considered throughout and are illustrated front time to time as seems most intnrnimlive. Need

|or such double truncation of the equations arises due to (1) natural caiuses. (2) the artificial

restraints placed on the eqtuations by dillerent. (lis( iplinary delinitions anld (3) the desigin ( liarac-

teristics of instruments that are being. or will be, used to provide direct nlcasurclcill dail.

Frlom the work reported. it is concluded that the KM distributlonl julnlctionl. aId Il(t other

associated distribution equations of Gamma tlnction tyw)c, provide very realistic and trenien -

dously useful descriptors of size-distributed and totals quanlitilies involved in iloud physics.

precipitation physics, and aerosol physics.
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Implications of the Khrgian-Mazin Distribution

Function for Water Clouds and Distribution

Consistencies with Aerosols and Rain

1. HISTORY AND INTRODUCTION

From 1970 to 1984. the Air Force Geophysics Laboratory (AFGL) provided weather definition

information to the Ballistic Missile Office (BMO) of the Air Force Systems Command (AFSC) lor

their SAMS/ABRES* program of investigating the "rain erosion effects" of hydrometeors (rain.

water clouds, snow, ice crystals) that were present in the atmosphere along the trajectories of

missiles or re-entry vehicles. The objective was to determine the erosion effects of the hydromete-

ors on the nose cones of the vehicles.

Since direct measurements of the size distribution and liquid water content (LWC) of hydrom-

eteors along the path trajectories could not be made in real time, we. at AFGL, developed two

empirical models to predict the microphysical situations that were likely to occur along the

trajectories. One model predicted the likely events in the precipitation size range of the hydrom-

eteors (100 < D 5 5000 gim, where D is the drop diameter in drizzle or rain) and the second pre-

dicted the likely events in the cloud size range of the hydrometeors (1 < D < 100 Pim. with D being

the droplet diameter in water clouds).

The first of these models, the precipitation model, has been useu extensively from 1970 to the

present, in Plank' (1977). Plank and Berthel2 (1982), Berthel and Plank" (1963), Banta, Berthel,

and Plank4 (1986). and in Berthel. Banta. and Plank5 (1987).

* Received for Publication 2 Dec 1991

* These are acronyms for Sandia Air Force Materials Study and Advanced Ballistic Re-Entr, System.
Plank, V.G., 1977: Hydrometeor Data and Analytical-theorelical Inviestigations Pertaining to tthe SAMS Missile Flights of

the 1972-73 Season at Wallops Island. Viryniia. AFCRL/SAMS Report No. 5. AFGL-TR-77-0149. AD A051 192. ERI, No.
603, 239 pp.
2 Plank, V.G. and Berthel. R.O. (1982) A descriptive double-truncated exponential model for hvdrometeors of precip:table
size. Extended Abstracts: Conference on Cloud Physics. Nov. 15-18. 1982. Chicago. IL. preprint Vol.. 190-194. AFGI,-TR-
82-0347, AD A122036.
" Berthel, R.O.. and Plank. V.G. (19831 A Model/br the Estiftation o/ Rati Distributions. AFGL-TR-83 0030. Al) Al300O0.
ERP No. 822. 48 pp.

SBanta. R., Berlhel. R.O., and Plank. V.G. (I986) A bulk inicroplivsical paraimeterization hase(d on cloubly-trut ricmatI
exponential distribution anni empirical i clationships. Conlrcruce on, Cloud Plhyjsics. Snownuass. (C0

I Berthcl. R.O.. Banta. R.. and Plank. V.G. (19871 The Application o/ Doiubh'-inieoted I Itdroi ,cteor Distributions lo

Numerical Cloud Models. AFGL-TR-87-0050. ERlP No. 966. ADA 185 273. 26 pp.



However, the second model, for the cloud-size range of the hydrometeors, has never been
reported before, except for a brief summary by Plank' (1974). This model was very useful to us
during the SAMS/ABRES program and it is still pertinent today, as a base reference for describ-
ing the general nature of cloud-size distributions in the atmosphere as associated with visibility
theory. We have progressively upgraded and expanded the model over the years, based on the
fundamental distribution function of Khrgian and Mazin 1KM). This function is described in the
book "Cloud Physics." by Borovikov, Gaivoronskii, Zak, Kostarev, Mazin, Minervin, Khrgian. and
Shmeter7 (1963) which summarizes and extends the work of Mazin' (1952), Mazin 9 (1957),
Khrgian"( (1952), Khrgian and MazinII (1952), and Khrgian and Mazin' 2 (1956). plus others.

Future references to this work will be Khrgian/Mazin"3 (1963).

The "KM model" is highly versatile, having applications in such fields as cloud definition.
atmospheric visual-range/visibility, radar and lidar meteorology, and in providng continuity/
consistency information for cloud and meso-scale "storm models."

It should be noted that once a distribution function has been specified, it then follows immedi-
ately, by rigorous physics and mathematics, that all size-distributed and total quantities (involving

droplet number concentrations arid total number, involving summed, projected cross-sectional
areas and totals, as is important to visibility, involving cloud liquid water content (LWC), distributed
and total, and involving radar and lidar reflectivities, distributed and total) have also been specified
for any given single sample This fact, that all of the quantities cited above are rigorously interre-
lated by tl-e -t ;plc specification of a distribution function, will be demonstrated herein.

The a•hiii to "double truncate" distribution equations is highly valuable. Therefore, all
distribution equations herein are written for truncation between lower and upper size limits of
cloud droplet diameter and all "totals equations" incorporate an appropriate "truncation ratio."

This report is intended to demonstrate the versatility and utility of the KM equations across
various diverse fields of endeavor, each having their own conventional units and nomenclature.
To deal with the units problem, the author has specified a "standard set" of units in which all
distribution and totals equations are commonly expressed. Thus, droplet diameters are in mm
and the bandwidth of the distributed quantities is in mm. The latter should pose no difficulties
for cloud physicists (as strictly classified) since bandwidth is merely a -scale adjust factor" that
can be chanmged to meet any disciplinary requirement or to "match"classified data.

Plank. V.G. (1974) Liquid-water-conlent and H.4drometeor Size-distribution Information for the SAMS Missile Flights of the
1971-72 Season at Wallops Island. Virginia. AFCRL/SAMS Report No. 3. AFCRL-TR-74-0296. AD A002370. Special Report
No. 178. 143 pp.

7 Borovikov. A.M.. Gaivoronskii. I.1.. Zak, E.G.. Kostarev. V.V.. Mazin. I.P.. Minervin. V.E.. Khrgian A. Kh.. and Shmeter.
S.M. (1963) Cloud Physics. Israel Prog. Sci. Transl.. Jerusalem. 392 pp.

" Mazin. I.P. (1952) Raschet otlozheniya kapel na kruglykh tsilindricheskikh poverkhnostyakh (Calculation of droplet
deposition on round cylindrical surfaces). Trudy Tsentral Aerolog. Obsv'. No. 7.

" Mazin. I.P. (1957) Fizicheskie osnovv obledeneniva samoletov (Physical bases of aircraft icing). Moscow.
Gidrometeorizdat.

Khrgian. A.Kh. (1952) Nekotorve dannve o niikrostrukture oblakov (Some data on the microstructure of clouds). Trudy
Tseniral Aerolog. Obsv.. No. 7.
1 Khrgian. A.Kh.. and Mazin. I.P. (1952) 0 raspredelenii kapel' po razmeram v oblakakh (The size distribution of droplets

in clouds). Trudy Tserntral Aerolog. Obsv.. No. 7. 56.

21 Khrgian, A.Kh.. and Mazin, [.P. (1956) Analiz sposobov kharakteristiki spektrov raspredeleniya oblachnvkh kaper
(Analysis of methods of characterization of distril)ution spectra of cloud droplets). Trudy Tsentral Aerolog. Obsv.. No. 17, 36-46.

Khrgian, A.Kh.. and Mazin. I.P. (19631 Cloud Physics. Israel Prog. Sci. Transl., Jerusalem. 392 pp.
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There are other quantities requiring conversion that cross disciplinary bounds or that have

been used in the literature. For example, the number concentration of cloud droplets in cloud

physics is conventionally expressed as number (No.) per cm'. The number concentration in

precipitation physics is No. per M 3 . Likewise, with regard to the density of liquid water, this is

usually specified in g cm 3. but. in particular theoretical developments, it is advantageous to

employ g M-3. There is also the problem of our "thinking units"-the British system for most

Americans versus the Metric system for many others.

In any event, the units of all equations are carefully noted and the need for a change from

standard are explained, if not obvious.

The sections on visibility occupy a preponderance of the report text. This is because the size

distribution of cloud droplets (the KM function) is intimately related to visibility theory. There is

no implication, however, that the other fields of endeavor considered are of lesser importance.

Consolidated distribution equations encompassing the full size range of aerosols. water-

clouds and rain are described in Appendix A. Aspects of the Mie (1908) scattering theory that are

important to equation development are presented in Appendix B. The visibility characteristics of a

monodispersed population of cloud droplets, as opposed to those of the KM function, are demon-

strated in Appendix C. These appendixes contain references that are included in the -List of

References." A separate bibliography is also included.

The report begins with a derivation of equations.

2. DERIVATION OF EQUATIONS

2.1 Number Concentration

The size distribution properties of cloud droplets in the atmosphere can be reasonably de-

scribed by the distribution function of Khrgian and Mazin' 3 (1963).* This is

ND) = Q D2 e-1"1 (d• D•< Dm) No. m- 3 mm-' , (I)

where the subscript "D" signifies "distributed by diameter" and where Q (in units of mm- 3 M-3) and

0 (in units of mm ') have discrete values based on the type and liquid water content (LWC) of the

clouds being considered. The equation, as applied herein, is presumed to be descriptive only

between the truncation limits D = d (a minimum diameter of physical or instrumental restriction)

and D = D. (a maximum diameter of physical or instrumental restriction). The units of d and D in

the equation are in millimeters.
The modal (peak value) diameter of the N[ distribution is

D, = 2/A2 mm. (2)

* The Khrgian-Mazin distribution function has also been used by Deirrnendjian" (1964) to study the scat te.ing and
polarization of water clouds and hazes at visual and infrared wavelengths.

Khrgian, A.Kh.. and Mazin. I.P. (1963) Cloud Physics. Israel Prog. Sci. Transl.. Jerusalem. 392 pp.

Diermendjian. D. (1964) ScatterinLg and polarization properties of water clouds and hazes in the visible and infrared.
Appl. Opt. 3:187-196
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DN is a measurable quantity of cloud distributions, hence, when DN is known. 12 is also

known, through Eq. (2).

The total number of cloud droplets in the population described by Eq. (1) is

N = N dD No. m-3 . (3)

or, on performance of the integration,*

Q 1'(3) rN
N No. mn3 , (4)

where F (3) is the gamma function of 3 (= 2) and rN is a "truncation ratio" specified by

ND dD

rN N.D.. (5)

J ND dD

where N.D. stands for nondimensional. From Eq. (1), this becomes

rN 1 1/2 {e-d [(Qd)2 + 2Md + 21 - e-I)11• [(QDJ)2 + 2 M.D + 211 N.D. , (6)

with d and Dm in mm and Q in mm'.

Another useful expression involving number concentration is the equation relating the peak

value of ND to the total number concentration N. From Eqs. (1), (2). and (4), and recognizing that

D = DN at the modal peak,

0.541 N
N p d'N r No. m-,"mm-1 , (7)

which equation can also be used in reverse, if desired.

2.2 Geometric Projected Area

The geometric (or projected) cross-sectional area of the cloud droplets described by Eq. (1) is

distributed with diameter as,

The definite integral 3D e11 dD. where n is any integer, is described in the Ilandbook of Chemistry and Physics''
(1982). (one of many references in which this integral is evaluated).

Weast. R.C.. and Astle. M.J., eds. (1982) flandbook of Chemistn] and Physics. CRC Press. Inc.. Boca Raton. Florida, A-
63. E-202.

4



irD 2 ND(
A= Dd - D:5 Dm) m-1 mm-1, (8)4

or

IT
AD= - X 10-6QD 4 e-D (d<D<Dmj m-1mm-1 (9)4

from Eq. (1). The constant carries length conversion units of m 2/ 106 mm 2 = 10-.

The modal diameter of the AD distribution (corresponding to the peak value) is

DA = 4/f = 2 DN mm, (10)

using Eq. (2).

The total cross-sectional area, of all droplets of all sizes between the truncation limits D = d

and D = D. is

A= iA-', ( I}

which, from Eq. (9). on integration, yields

A= it x × 10i-Q r(5) rA (12)

4 Q5s

where [(5) is the gamma function of 5 (= 24) and rA, in analogy with Eq. 5, is the truncation ratio

for cross sectional area given by

rA = '/24 (e-11d [(Qd)4 + 4(fid)3 + 12(lid)2 + 24 iQd + 24] (13)
- e-QDmn[{(QDm}4 + 4(QDmJ3 + 12(QDm) 2 + 24 QDm + 241} N.D.

It might be mentioned at this point that it is advantageous, computationally and for ease of

writing, to express the equations for all truncation ratios herein in terms of Q, rather than D'N
through Eq. (2).

From Eqs. (2), (9), (10), and (12), and noting that D = Dý, at the modal peak,

0.391 A
ADp D DrA m-1 mm-' (14)

which equation also applies in reverse.

5



2.3 Liquid Water Content

The liquid water content of the cloud droplets described by Eq. (1) is distributed with diam-
eter as

MD = (d < D < D) g m-3 mm--. (15)
6

or, from Eq. (1), and since Pw, the density of liquid water, equals I g cm-3 ,

it× I0-a Q D~e-L'D
M[ = (d 5 D 5 D,) g m-3 mm- , (16)

6

where the constant carries length conversion units of cm 3/ 103 mm = 10-3.
The modal diameter of the MD distribution is

DM = 5/f = 2.5 DN mm, (17)

employing Eq. (2).
The total LWC of all cloud drops of the population is

D_
M= MOdD gm-3, (18)

which, from Eq. (16), on integration, gives

×X 10-3 QFF(6)rm
)6 Q6

where r(6) is the gamma function of 6 (= 120) and rM. in analogy with Eq. (5). is the truncation
ratio for liquid water content specified by

rM. - ".12 le-lid 1(12d) 5 * 5(Qd)4 + 20(Kid)3 + 60(Qd) 2 + 1200d + 1201 (20)
- e--')Dn [(QDm,)5 

+ 5(1-D ) 4 + 20(WDm}V + 60(QD,.) 2 + 120LD,11 + 1201) N.D..

From Eqs. (2). (16). (17). and (19), with D = D', at the modal peak,

0.351 M
Mgp D'rm m- 3 mm-1 (21)

which may be reversed, if pertinent.
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2.4 Radar/Udar Reflectivity Factor

The distributed values of the radar/lidar reflectivity factor Z for the cloud droplets described

by Eq. (1) are expressed by

Z 0 = DI N, (d - D - Dm) mmM6 M-3 mm-' . (22)

or, from Eq. (1),

Z = Q Ds e-ID (d S D5 _Dm) mm 6 M-3 mm-' . (23)

The modal diameter of the ZD distribution is

Dz = 8/Q = 4 DN m, (24)

using Eq. (2).
The total reflectivity factor for any given cloud population is

Z z D dD mm6 rn-3 , (25)

which, from Eq. (23). results in

Q r(9) r,
Z = mm 6 M-3, (26)(t9

where r(9) is the gamma function of 9 (= 40,320) and rz is a truncation ratio for the reflectivity
factor, which, in analogy with Eq. (5), yields

rZ = '740320 le -d I(Od)8 + 8(Qd)7 + 56(0d)6 + 336(ild)5 + 1680(lid)4 + 6720(!Ud)3  (27)
"+ 20160(l2d)2 + 40320ld + 40320] - e Dm[(QDm)I + 8(fiD ) 7 + 56(CID }) + 336(fLD )5

"+ 1680(f2D )4 + 6720(f2D )3 + 20160(fMD )2 + 40320lID. + 40320]) N.D..

Although Eq. (27) is "messy," it can be readily solved by computer or even by a programmable
hand calculator.

From Eqs. (2), (23), (24). and (26), wit .T) = D,, at the modal peak,

0.279 Z
ZDp = mm 6 m-3 mM-1. (28)DNr

which also applies in reverse.

7



3. THE DISTRIBUTION AND TOTALS EQUATIONS EXPRESSED IN TERMS OF D' AND M

3.1 The Equation for Q in Terms of DN and M

The equation for Q is obtained from Eq. (19). If this equation is solved for Q,

60't M
Q 10-3 t ['(6) r mm-3 in 3 . (29)

or. on evaluation of the numerical factors,

15.9 (16 M
Q = mm-3 m-3 . (30)

rM

This equation may be expressed in terms of D' and M through the use of Eq. (2). Thus.

1020 M
Q D mm-3 M-3 . (31)

D rM

which is the desired equation.

3.2 The Distribution and Totals Equations

With the development of Eq. (3 1), it becomes possible to express the distributed and totals

equations (1). (2). (9). (12). (16), (19). (23), and (26) in terms of the measurable quantities DN and

M.

To avoid unnecessary verbiage, the converted forms of the equations cited are merely listed

below without comment. The conversions require the use of Eq. (3 1) and also the use of Eq. (2).

The numerical quantities have been -valuated and all constants have been rounded off to three or

four significant figures as is appropriate.

N, and N versus DN and M

1020 M D2 e-2 DIDN
ND (dD < Dr _ D,1 1 ) No. m3 mm . (32)

N rM

.255 M rN
N= N No. min. (33)

N r.

AD and A versus D. and M

8.0 x 10-4 M D4 e-2 D/[N
A. D (d:5 D ) m-1 mm-1 . (34)

N rM

8



6.0 x 10- M rA = Am . (35)
DN' rM

M, versus Dq and M

0.534 M D5 e-2 'D/"
MD= D r (d<D<DJ gm 3 rmm t . (36)DN rM

Total M is, of course, one of the measured, independent quantities.

ZD and Z versus DN and M

1020 M D1) e-2 D/,N

ZD= D' r (d<D<Dm) mm M-n3 mm . (37)

8.03 X 104 M D13 rz
Z = mm 6 in 3 . (38)

r M

4. DISTRIBUTION PLOTS AND ILLUSTRATIONS OF TRUNCATION EFFECTS

Plots of the distribution equations (32). (34). (36), and (37) are presented in Figure 1. The
upper diagram shows three plots of distributed droplet number concentration, for liquid water
content values of 1.0. 0.5, and 0. 1 g m-3. which are indicated on the diagram. Also indicated are

the values of the total number concentration, as computed from Eq. (33). D' is assumed to have a
typical, constant value of 0.01 mm = 10 p m and the vertical line of this diameter is noted [Eq.
(7)]. Two sets of ordinate and abscissa scales are employed. The normal set, at the left and bot-
tom, gives ND in No. cm- 3 pm-1 versus D in pjm (cloud physics convention). The auxiliary set, at
the right and top, gives ND in No. m-3 mm-1 versus D in mm (precipitation physics convention).

The diagram (second from top in Figure 1) contains three plots of the distributed, cross-
sectional areas of the cloud droplets for the M values cited above, as computed from Eq. (34). The
values of the total, projected cross-sectional area, for all droplets of each population depicted, as
computed from Eq. (35), are noted on the plots, as is the vertical modal line of DA = 2 D,, = 20 p im
[Eq. (10)]. Values of V are also noted. This maximum visibility quantity is discussed in Sections

6.1 and 6.2.

The third and fourth diagrams of Figure I are essentially similar to the first two. The third
shows plots of Mn, from Eq. (36). and the total M values are those of basic specification. The line
of D' = 2.5 D'N = 25 gm is indicated (Eq. (17)]. In the fourth diagram. the plots are those of Eq.

9
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Figure 1. Non-truncated plots of N,,. A),. M,, and Z,, for three liquid water content (LWC) values.
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(37); the total reflectivity values come from Eq. (38). The modal diameter of ZD is D, = 4 D, = 40

gim [Eq. (24)1.

It is assumed that there is no truncation in the Figure I plots, hence r, = r, = rM = r. = 1.0. It
should also be noted that the distribution equations shown on the diagrams require D entry in

mm.

The four diagrams of Figure 1 reveal the shape of the curves of the Nf). Ak, MW. and Z1) distri-

butions and the ordinate scales provide numerical information about the values versus droplet

diameter. A comparison of diagrams demonstrates how the modal peaks -shift upward" from NJ,),

to A,), to MD[ to ZD0 (where the -p" subscript signifies -peak." or maximum, value). This upward
shift of the peak is in accord with the increase of the -diameter moment- (of a Gamma Function).

from D2, for N[D. to D', for A), to DM. for M[), and to D1. for Zu.

Figure 1 is also useful as a reference for illustrating the effects of truncation on the four
distributions. Two cases of truncation will be considered, both involving commercially-available.

aircraft instruments.

The Johnson-Williams (JW) instrument is representative of a class of cloud LWC sensors
referred to as "hot wire devices."* A length of thin copper wire, encased in teflon tubing, is ex-
posed perpendicular to the airstream and electrically heated. This heated wire comprises one arm

of a balanced bridge. A second, similar wire, not heated and exposed parallel to the airstream,

comprises an adjacent, reference arm of the bridge. Water droplets striking the encased, heated

wire are evaporated, thus cooling the wire and decreasing its resistance. The degree of unbalance

of the bridge is a function of the cloud LWC.

From flight experience. the JW instrument is generally capable of measuring droplet diam-

eters between the truncation limits d 1- I pm to D __ 40 gim. with educated guesses extending the

latter to something approaching 80 p m.

The JW instrument truncation, relative to the KM distributions, is illustrated in Figure 2. The

figure is merely a modification of Figure 1, with screening superimposed to indicate the spectral

portions of the plots that would not be detected by the JW. It is seen (upper diagram) that the
instrument would obtain sufficient information to define the distribution characteristics of droplet

number concentration and to ascertain a fairly accurate estimate of total number concentration.
The truncation ratio for the detected portion of the plots is rN = 0.985, from Eq. (6). This agrees.

as it should, with the visually discernable ratio of the white areas under the curves to the areas

covered by the screening.**
The detection ability of the JW instrument for cloud droplets that are important to projected

cross-sectional area (and visual range) is not quite as good as for number concentration. The

second diagram of Figure 2 shows that the large diameter parts of the A) distributions are appre-
ciably truncated. The truncation ratio. rA, for the plots is 0.90 1, from Eq. (13). This means that
the JW detects 90 percent of the total projected area that is present in the KM distributions,

which conforms with the ratio of white to screened areas shown visually.

* Bacharach Instrument Co.. 625 Alpha Dr.. RIDC Ind. Pk.. Pittsburgh, PA 15238

o Since the diagram plots are "linear plots." areas under the curves on the paper are directly proportional to the totals.
or truncated portions, of the distributed quantities lying under the curves.
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The third diagram of the figure reveals the JW instrument truncation situation for liquid
water content. The truncation ratio, from Eq. (20), is rM = 0.809. which implies that the JW
instrument's detection ability for cloud droplets that are important to LWC is about 81 percent.

The fourth diagram of the figure demonstrates that the JW instrument fails to detect the
majority of the cloud droplets that are important to the radar reflectivity factor. Only some 41
percent of the droplets are detectable, from the r, value (0.407) of Eq. (27). This suggests that the
JW instrument is unsuitable for studies of the radar reflectivity properties of water clouds. [For
any, given, distributed quantity, the author considers an instrument to be incapable of providing
useful information about the quantity if (1) the instrument cannot detect the normally-anticipated
modal peak within its truncation range, or, if (2) the truncation ratios anticipated are s 0.5.1

In contrast to truncation involving the JW sensor, let us now focus on another class oi com-
mercially-available, aircraft, cloud-LWC-instruments, namely the Particle Measuring Systems

(PMS)* so-called one-dimensional cloud probe (IDC) and two-dimensional cloud probe (2DC),
which are described by Knollenbergt6 (1970). Several models exist for each of the probes. These
instruments essentially consist of a line of photodiode detectors that are laser illuminated across

an air gap oriented normal to the airstream. Cloud and drizzle droplets that pass across the "gap
line" shadow one or more of the detectors. When the diode information (as being "shadowed or
not") is suitably buffered and recorded for semi-immediate release, number count data are pro-
vided as a function of droplet diameter. This is the I DC instrument. The 2DC instrument differs
in that knowledge of the true airspeed of the aircraft is employed to "look at" the droplets (or ice
crystals) individually, in two dimensions. This provides "shadow graphs" of the particles cncoun-
tered. Total LWC with either instrument is obtained by summation.

The PMS, IDC, and 2DC probes are commonly truncated at d = 20 mrn, which is the smallest
diameter of detectability. The largest diameter detectable with the 1DC instruments is 300 p m.
The largest detectable with the 2DC's ranges from 600 p m to 2000 p m dependent on the model

type.

The truncation situation of the PMS sensors is illustrated in Figure 3. The figure is a modifi-
cation of Figure 1 and is similar to Figure 2, in that screening has been used to indicate the
diagram portions not detectable by the instruments. Thus, d = 20 Pim and D, > 200 gm, which
lies well beyond the right hand boundaries of the figure diagrams.

The truncation situation for number concentration indicates that the PMS instruments are
unsuitable for cloud studies involving this quantity. The truncation ratio from Eq. 6 is
rN = 0.238 and it is visually obvious, from the plots, that the instruments fail to detect the modal

peaks of the KM distributions.

The situation for projected, cross-sectional area is somewhat questionable: rA = 0.629 and it
is seen that the modal peaks are detected, but "just barely." The instruments cannot be used for
area/visibility studies tudess their data are "compensated" for the spectral portions "not seen."

The truncation situation for LWC is improved, but data compensation is still required. The
truncation ratio is 0.785. The situation for radar reflectivity factor is good: r, = 0.979 and the

* Particle Measuring Systems. 1855 South 57th Court. Boulder. Colorado 80301

' Knollenberg. R.G. (1970) The optical array: an alternative to scattering or extinction for airborne particle size determi-
nation. J. Appl. Meteor.. 9:86-103.
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instruments should provide excellent information about the radar reflectivities in water clouds.

(For those radars that are capable of detecting clouds, see Section 10.3 and Table 8.)

5. THE BASIC KHRGIAN-MAZIN DISTRIBUTION FUNCTION

The KM distribution function is the equation (for number concentration) that leads to all the

other distribution and totals equations developed herein. Therefore, we have a legitimate question

in asking. "how descriptive of the real world of cloud physics is the function, actually?-.

The general form of the function, as pointed out by Diermendjian' 4 (1964), is

GD F D" e (39)

where Go is any given distributed-hydrometeor-quantity, D is the effective diameterts) of the

hydrometeors. n is an integer "moment number" (of a Gamma Function). F is a coefficient factor.

not necessarily a constant, and f is a multiplication factor of the exponent. also not required to be

constant.

Khrgian and Mazin were probably the first to recognize the importance of this generalized

distribution form as applied specifically to cloud physics. They tested the form versus some

600,000 droplet samples of number concentration and concluded that the best description was
obtained for a moment number n = 2, [Borovikov, et. al.7 (1963)J. This leads directly to their
distribution function, Eq. (1) herein.

Diermendjian himself presented powerful evidence about the descriptivity of the general

equation. He applied the equation to aerosols, employing the data of Junge. Chagnon and
Manson 7 (1961). He found that the data were best described by the moment number 6.* He then
used the theory of Mie'l (1908). together with his equation for aerosols and that of KM for water
clouds, to deduce the scattering and polarization properties of aerosols, hazes and water clouds

at visual and infrared wavelengths. His report is a valuable contribution to the literature.

There should be little question, therefore, about the quality of the KM function that provides
the basis for the present work.

The primary, immediate areas of application of the KM function would appear to lie (1) in the

area of "weather definition" and (2) in the area of providing design, operational, and testing assis-

tance to insure the internal cloud physics consistency and continuity of so-called "storm models."

* The skewing of the general distribution function, [Eq. (39)1, toward larger sizes relative to the mode, increases with
moment number. Diermendjian. from Khrgian-Mazin, noted that the number distributions for clouds is best fitted with
moment number 2 (small skew). As the moment number increases to 4 (for plan area), to 5 (for LWIC. to 8 (for radar Z).
the skew of the associated distributions increases. Diermendjian also found that the number distribution for aerosols is
best fitted with monment number 6. This implies immediately that. for aerosols, the moment for plan area is 8. the moment
for LWC is 9 and the moment for radar Z is 12. Thus, the aerosol distributions evidence more skewing than the cloud
distributions.

14 Diermendjian. D. (1964) Scattering and polarization properties of water clouds and hazes in the visible and infrared.
Appl. Opt. 3:187-196

I Borovikov. A.M.. Gaivoronskil, I.1.. Zak, E.G.. Kostarev, V.V.. Mazin. I.P.. Minervin, V.E.. Khrglan A. Kh.. and Shmeter.
S.M. (1963) Cloud Physics. Israel Prog. Sci. Transl.. Jerusalem. 392 pp.

" Junge. Ch.E.. Chagnon. C.W.. and Manson. J.E. (1961) JMetcor.. 18:81.

" Mie. G. (1908) BeitrAge zur optik iruber medien. speziell kolloidaler metallosungen. Ann. Phys., 25:377-445 (Leipzig).
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Weather definition comprises a wide range of application which can be roughly described as
"the ability to predict the state of the atmosphere, including hydrometeors, for any operational
need." As mentioned. AFGL provided such information to BMO as part of their SAMS/ABRES

program concerning hydrometeor erosion of the nose cones of missiles and re-entry vehicles. The
hydrometeors were predicted using the KM function, for water clouds, from aircraft JW measure-
ments of cloud LWC6 (Plank. 1974) and using the exponential function described by Plank' (1977)

and Plank, Berthel and Barnes" ' (1980), for rain, employing radar data. Ice crystals and snow
were also predicted from radar data. The equations contributed importantly to the assessment of

hydrometeor erosion of nose cones at hypersonic velocities.

The capabilities of AFGL [now Geophysics Directorate of the Phillips Laboratory (GP)I for

predicting the distribution properties of water clouds should be enhanced by the equations
developed herein. With the consolidated equations for both clouds and rain, presented in Appen-
dix A. if they are programmed for computer solution, much of the previous work of providing
tabular and graphical information to a user could be substantially reduced and the products

could be submitted more quickly.

The second area of application is that of providing design, operation, and testing information
for storm models. A start toward this goal has been reported by Banta. Berthel and Plank4 (1986)
and Be-thel, Banta and Plank 5 (1987). In essence, the KM equations, incorporated into the coin-

posite equations, will provide checks on the consistency of the various microphysical assump-
tions that were made in the original design of the model. For example, is an assumption regarding
the production of liquid water in the model consistent with another assumption made elsewhere

in the model about the distributed nature(s) of the hydrometeor spectra of the totals? Is there
continuity in the working model? Questions such as these are reintroduced in Appendix A, after
the discussion and illustration of the features of the composite equations.

We turn now to a consideration of visual range and visibility, as predicted by the KM distribu-
tion function.

6. DESCRIPTION OF VISUAL RANGE, MAXIMUM VISIBILITY. AND VISIBILITY

Bennett2" (1935) was probably the first to note the distinction between "visibility." a subjec-
tive, popular-usage term, and the "visual range," a term that is more specific and quantifiable.

S Plank. V.G. (1974) Liquid-water-content and Htjdrometeor Size-disiributior Inlbrmatioi Jbr ilic SAMS Missile Flights ofthe
1971-72 Season at Wallops Island, Virginia. AFX'RL/SAMS Report No. 3. AFCRl,-TR-74-0296. AD A002370. Special Report
No. 178, 143 pp.

' Plank. V.G. (1977) Hydrometeor Data and Analvtical-theoretical Investigations Pertaining to the SAMS Missile Flights of
the 1972-73 Season at Wallops Island. Virginia. PAFCRL/SAMS Report No. 5, AFGL-TR-77-0149. AD A051 192. ERP No.
503, 239 pp.

"' Plank. V.G.. Berthel. R.O., and Barnes. A.A. (1980) An improved method for obtaining water content values of ice
hydrometeors from aircraft and radar data. J. Appl. Meteorol.. 19. 1293-1299. AFGL-TR-81 -001 1. Al) A094328.

S Banta, R.. Berthel. R.O.. and Plank. V.G. (1986) A bulk mnicrophysical parainetecrization based on (lotIbly truncated
exponential distribution and empirical relationships. Con/crectcn oo Cloud Phiysics. Snowmass. CO.

Berthel. R.O.. Banta. R.. and Plank, V.G. (1987) The Application of Doihle-tnuincaed ltydrometeor Distribul ions to
Numerical Cloud Models. AFGL-TR-87-0050. ERP No. 966. ADA 185 273. 26 pp,

Bennett, M.G. (1935) Further conclusions concerning visibility 1y day and night. Quart.lr.. lboi. MetcoroL Ycx.. 61:17,9-188.
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Mlddleton 2
1 (194 1) and Houghton2 2 (1945) added additional details to the distinction.

To paraphrase Huschke 2 3 (1959). the term "visibility" is specified to be the distance at which

viewed objects can be recognized. The more general expression "visual range" carries no require-
ment of recognition but only of the ability to "see" out to a given range. For example. an aircraft
pilot flying in clouds always has the day/night ability to see ahead to the visual range (of "first
discernment") without the also necessity that a particular object exists ahead at a visibility (dis-

tance) of "recognition."

6.1 Maximum Visibility

The maximum visibility (of "recognition") is related to the summed projected cross-sectional
area of the cloud droplets in the manner illustrated and described in the following paragraphs.

Consider a square tunnel of I meter by I meter cross-section, along which "distance marks"
have been emplaced every meter of length, leading to infinity (see the sketch of Figure 4). The
tunnel consists of a series of cubes, each of 1 m2 cross section and I m3 volume within which
there is strict mathematical adherence to the rules of the KM distribution function concerning the
numbers and size distribution of cloud droplets.

If we look down this tunnel from its near end. our ability to recognize objects (that might be
present at some location along the tunnel) depends on the summed, projected cross-sectional

areas of the droplets. Thus. the visibility reduction due to the presence of the droplets is

AV= 1.0 N.D., (40)

or

V = I/A m, (41)

where V is the symbol used to identify this particular quantity. The rationale for the symbol is

that it is an inverted A, which is precisely correct.
For the A value of the Khrgian-Mazin distribution function. [Eq. (35)1, this visibility becomes

1667 DN rM
m. (42)

MrA

It is reiterated that V describes only that portion of the visibility reduction due to the direct
blocking (or shadowing) of the cloud droplets themselves. There are other important contributions
to visibility reduction, such as diffraction-reflection (and the secondary effects), the contrast of
the objects viewed, solar effects, the size of objects, etc. These will be considered in the following

sections.

2' Mlddleton. W.E.K. (1941) Visibility in Meteorology. second edition, Univ. of Toronto Press. Toronto.

22 Houghton. H.G. (1945) Visibility. Handbook of Meteorology. McGraw-Hill Publishers, 242-251.

23 Huschke. R.E. (1959) Glossary of Meteorology. Amer. Meteor. Soc., Boston. 613.
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It should be stated initially that the equations to be developed herein have no fundamental
day/night dependence. They can be applied to either. In the discussions of the present report.
sufficient threshold illumination (equal to or exceeding twilight amount) is assumed to exist. For
nighttime viewing (not discussed herein) the equations can be modified to reflect the situation of
looking at lights and artificially-illuminated objects.

It is also assumed a-priori that the atmospheric medium along the -path of view" in any given
visibility situation is a homogeneous one and that the path(s) are not restricted by any effects of

earth curvature.

6.2 Visibility

In the development of the visibility equation, it should first be noted-the details are de-
scribed and illustrated in Appendix B-that cloud droplets, due to their sizes relative to the
wavelength(s) of visible light, fall primarily in the region of geometric optics of the general scatter-
ing theory of Mie 11 (1908). In this region, the principal effects that tend to make the apparent
diameters of the droplets "look larger" than their actual physical sizes are extinction effects
caused by diffraction (ad), by internal reflection and refraction (er ), by the sun's elevation and
azimuth angles relative to an observer's line of sight (a.r ). by secondary effects of all types (a.,d)
and by the backscatter toward the observer caused by atmospheric gases and aerosols that tend
to educe an observer's contrast for objects viewed (,-tr" The latter is a subject discussed by
Duntley24 (1948).

Johnson 25 (1954) has indicated that the total extinction for clouds may be written as the sum
of the components. Thus,

a = A + ad + ur, + e•,, + er.d + ctr m-, (43)

where A. the projected, cross-sectional area, is the principal, mathematically-stable component of

the total.
For simplification, Eq. (43) may be written as

a = A + a E m1- (44)

where a E, the "extra extinction" caused by all components additional to A. is given by

OaE =•a d + U + er Sol + (Td + actr m-1 , (45)

The ratio,

k = - N.D. (46)

Mie. G. (19081 Beitrage zur optik truber medien, speziell kolloidaler metallosungen. Ann. Phys.. 25:377-445 (Leipzig).

24 Duntley. S.Q. (1948) The visibility of distant objects. J. Opt. Soc. Amer.. 38:237-249.

25 Johnson. J.C. (1954) Physical Meteorology. New York Technical Press. MIT and Wiley. 393.

19



has been defined by Stratton26 (194 1), Kerr and Goldstein2 7 (1951) and others. It is the same ratio
which, for single spheres. is illustrated in Figure B 1. Appendix B. in the context of the Mie scat-

tering theory. The ratio, of course, also applies to multiple spheres, if their size distribution is

known or specified.

With Eq. (44) introduced into Eq. (46),

A + rE •

k = = I + - N.D.. (47)
A A

which shows that, for spheres consisting of water droplets in the Mie scattering region of geomet-

ric optics. k, can never have a value smaller than unity.

Johnson 2
5 (Ioc. cit., page 80) has shown (working through differences of symbology) that

In (I/E)
r = m-1 ,(48)

V

where V is the visibility and In (1 /) is the 'contrast" that specifies observe, r instrument ability
to differentiate and "see" objects of various shades of gray, or of color, againlst their gray or col-

ored backgrounds. Examples would include a black object against a white background, or vice
versa, or a blue object against a reddish sky, or vice versa.

If Eq. (46) is introduced into Eq. (48) and the result is solved for V.

In ( 1/Fl
Vm= m, (49)

k1 A

This is the general form of the visibility equation of Trabert21 (1901). The equation can be
made "distribution specific" with assumed (or measured) knowledge of A, based on the particular

properties of the cloud droplet distribution.
For the Khrgian-Mazin distribution employed in this report, A is given by Eq. (35). When this

equation is substituted in Eq. (49),

1667 D'In (I/E) rm
V=m. (50)

k,, M rA

This is the Khrgian-Mazin form of the general Trabert equation.

26 Stratton. J.A. (1941) Electromagnetic Theory. McGraw-Hill. 563 pp.

17 Kerr. D.E.. and Goldstein. H. (1951) Radar targets and echoes. Propagalion of Short Radio Wat•s. 13. Chap. 6.
McGraw-Hill.

25 Johnson. J.C. (1954) Physical Meteorology. New York Technical Press. MIT and Wiley. 393.

2. Trabert. Wilhelm (1901) Die extinction des lichtcs in cinem truben mediturn (Schwcite in wolken). Meteor. Z.. 18:518-
525.
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Equation (42) permits Eq. (50) to be written alternately as

V In (0 /)
V k m. (51)

The definition of maximum recognition visibility (for the KM distribution) may be deter-

mined from Eqs. (50) and (5 1), as follows.

The maximum occurs when V = I and k,, = 1.0. For these conditions, Eq. (51) becomes

In (IIF) = 1.0 N.D. , (52)

or

= 0.368 N.D.. (53)

As a matter of interest and to facilitate forthcoming comparisons with the historical work of
others, we might also determine the equation conditions that apply to the KM distributions for

the limit of discernment seeing.

Koschmleder 29. 30 (1924a, 1924b), from experiments and reference to the work of Weber3'

(1916), Helmholtz 32 (1896) and others, deduced that the discernment limit (for his "black body")

had the value F = 0.02, with In (1/%) = 3.9 1. Subsequent investigators almost universally used
this limit as the "standard" for their visibility studies.

The seeing differences associated with recognition-viewing (or visibility) as opposed to dis-

cernment-viewing (or visual range) may be determined by writing the ratio

VD
RD/R = D N.D. ,(54)

V

where VD and V are the viewing limits corresponding to the discernment (V[) and recognition (V)

situations.

From Eq. (50), assuming that E = 0.02, for discernment viewing, and Em. = 0.368, for recogni-
tion viewing, we obtain, when Eq. (50) for the separate situations is introduced into Eq. (54).

In (1/0.02)
R,/R = In (1/0.368) = 3.91 N.D. (55)

2 Koschmieder, H. (1924) Theorie der horizontalen sichtwette. Beitrdge zur physik derfreien atmosphdre. X11:33-53.

-' Koschmleder. H. (1924b) Theorie der horizontalen slchtweite I: kontrast und slchtwelte. Beitrage zur physik derfreten
atrnosphare, 31Mi: 171-18 1.

3' Weber, L. (1916) Die albedo des luft planktons. Ann. d. Physik. IS:427-449.

32 Helmholtz, H.L.F. von (1896) Handbuch der Physiologtschen Optik. Hamburg und Leipzig.
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Thus, all other conditions being equal, that is. the conditions of contrast, of scattering ratio.

and of LWC. the visual range will be 3.91 times larger than the visibility. This is the prediction of

the KM distribution equations. The ratio value also presumes that the Koschmieder E value is

definitive.

We continue with further consideration of the properties and limitations of the KM visibility

equation. [Eq. (50)1.
First of all, the truncation ratios, r., and rA. that enter the equation are neglected for the

moment. However. they are not forgotten.

The extinction ratio, k,,. of the equation should have values ranging from about 1.5 (normal)

to perhaps as much as 4.0 (with solar effects). Looking at the components of Eq. (44). which

establish the values of k, through Eq. (46). we should be able to evaluate the component (, from

diffraction theory. The component. (r,. due to solar angle is also diffractive, will be of major

importance, and will have maxima both in the sun direction, where coronas are observed, and in

the anti-solar direction, where glories are observed. This component, too. should be amenable to

evaluation from diffraction theory and from the theories of coronas and glories. According to

Minnaertf" (Dover Publications. 1954) such corona/glory phenomena are commonly present in all

clouds, even though the coronas and glories themselves may not be visually obvious (also refer-

ence Jones and Condit"' (1948)1. The components (3. r,,, and Tr, of Eq. (44) are and will be

exceedingly difficult to predict. Perhaps outdoor visibility experiments under known conditions of

solar angle and subject contrast might assist. Or. long-term visibility experience at numerous

reporting stations might provide some useful information.

The contrast. In (I /E), in Eq. (50). for recognition viewing, will have values ranging from the

maximum value of 1.0 (for E, = 0.368) to the "no contrast" value of zero.

The modal diameter. D,. in Eq. (49). has heretofore been assumed to be a constant, having a

typical value of 0.01 mm (10 pm). This is not likely though, because, as the liquid water content

decreases in a cloud, to the point where it can no longer be called a cloud, the cloud droplets at

the modal peak of the size distribution cannot remain at constant diameter. The modal diameter

(along with the rest of the distribution) must shift downward in size toward zero as the cloud LWC

approaches zero. Therefore. D'. in Eq. (50), must be a function of M. The nature of the function

will be explored in the continuing discussion.

6.3 Nomographic Illustration of the Characteristics of the KM Visibility Equation for
Constant D,

For D, = constant = 0.01 mm and rM = rA = 1.0 (no truncation). Eq. (49) reduces to

16.7 In 0l/E)
Vm. (56)k, M

which is an equation in four variables. E. k,. M. and V.

A3 Minnaert. M.G.J. (19351 Light and Colour in the Open Air. G. Bell & Sons. Ltd. (Republished 1954. Dover Piblications).

,4 Jones. L.A.. and Condit. H.R. (1948) Sunlight and skylight as determinants of photographic exposure-luminous
density as determined by solar altitude and atmospheric conditions. J. Opt. Soc. of Amer.. 38:123.
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The only way to illustrate the characteristics of this equation is by use of a nomogram. Such

a nomogram is presented in Figure 5 and may be explained as follows.

The Figure 5 nomogram, in addition to indicating the solution of Eq. (56) for recognition

visibility, also contains input arows and tracing lines to show, for one particular example. how a

user would 'enter" the nomogram with the variables k,. E (actually (In (1 /Efl. and M to obtain

values of V.* A consideration of this example will provide instruction about the use of the nomo-

gram.

The lower portion of the nomogram. with the insert arrows (In ( l/F)!E--E" for "example"- and

k,,, and the sloping tracing lines, partially solves Eq. (56) for the ratio (In (1 /E)/k ,E. The scale of

this ratio lies along the line X - X. The scale values are not shown on the nomogram. but the

scale is linear and the values are readily deduced.

The main. upper portion of the nomogram thus receives the input quantities [In 1 /E)/k,,.

from its lower, abscissa scale, and ME, from its left-hand ordinate scale, which solves Eq. (56) for

VF. The isolines of V have been drafted on the nomogram. With reference to these isolines, our

example provides a visibility value of VE = 550 m.

The value of Emax = 0.368 (vertical line), corresponding to perfect contrast, is noted on the

nomogram, along the . scale at the bottom. This vertical line may also be scaled for values of the

maximum visibility. V. as indicated by the "V arrow" at the top of the nomogram. The V values are

those of the V isolines, at the points where they intersect the vertical line. The values are the

visibility reductions caused by the droplets themselves, with perfect object contrast and k, = 1.0.

The nomogram is limited by cloud physics and meteorological realities. Hence. M is limited, at

its upper bound, at 5 g m-3 . Findings reported by Lewis"5 (1947). Pettit36 (1955), and Borovikov, et

al. 7 (1963) reveal that cloud LWCs rarely. if ever, exceed 2-4 g m-3 . so this provides a degree of
"overplot." The visibility isolines are labeled from 2 m to 50,000 m (31 miles). This spans the

range of research/experimental, aviation and synoptic-meteorological interest.

The Figure 5 nomogram reveals two things of fundamental importance to cloud physics and

visibility. First, where visibility is concerned, very small values of LWC are important. Second, the

dichotomy is revealed regarding the assumption of D, = constant. How can it be possible, for

example, to have a modal diameter of 0.01 mm (10 j m) in association with a large visibility of,

say 50,000 m, corresponding to M values in the range 3 X 10- g m-3 or smaller? The answer is

that it is not possible. A "merger assumption," between the number concentration and mass

contents of aerosols and those of water clouds, is obviously required. The assumption will neces-

sarily involve a statement of the dependence of D, on M as D, approaches the aerosol region.

Such an assumption is described in the following section. It is a major assumption that will

affect all of the subsequent work of the present report and that the author did hot make lightly.

* Real or postulated knowledge of any three of the variables will provide an estimate of the fourth (by "working the
nomogram backward").

11 Lewis. W. (1947) A Flight Investigation of. the Meteorological Conditions Conducive to the Formation of Ice on Airplanes.
Tech. Notes Nat. Adv. Comm. Aero., Wash., 1393. 34.

:V Pettit. K.G. (1955) The characteristics of supercooled clouds during Canadian icing experiments. Proc. Toronto Confer-
ence.

SBorovlkov, A.M.. Gaivoronskii. L.L.. Zak. E.G.. Kostarev, V.V.. Mazin. I.P.. Minervin. V.E.. Khrgian A. Kh.. and Shmeter.
S.M. (1963) Cloud Physics. Israel Prog. Sci. Transi.. Jerusalem. 392 pp.
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Rather, much of the visibility, cloud physics, and aerosol information of the literature, pertinent

to the problem and cited in the references and bibliography herein, was reviewed and judged

(subjectively, of course) before the assumption was made.*

7. THE D, VERSUS M ASSUMPTION STEMMING FROM VISIBILITY CONSIDERATIONS

The droplet sizes in cloud populations will not decrease to actual zero as the LWC decreases.

Rather, they will decrease to the sizes of the condensation nuclei (moist aerosols) from which the

clouds were first formed.

A convenient reference atmosphere for aerosols is the "dry rural model" of Fenn, et a137

(1985). This model describes the normal, typical concentration of aerosols in the absence of any

special generation sources of particulates, such as sea salt, dust, smoke and industrial pollut-

ants. The features of the model as portrayed by the distribution function of Diermendjian' 4 (1964)

are illustrated in Appendix A, Figures AI-A5. Size distribution information for water clouds and

rain is also presented. It is seen that the largest of the aerosols overlap the smallest cloud drop-

lets, that the total number concentration of aerosols is about 105 times larger than the numbers

for clouds but that the mass concentrations of aerosols is about a hundred times smaller than

those for clouds.

In synoptic meteorology, the rule for reporting visibility as restricted or unrestricted is that

visibilities smaller than 6 miles (9650 m) are considered restricted whereas those larger than 6

miles are unrestricted. Restricted is not the same as the "unlimited" specification, which occurs

at a visibility equal to or greater than about 30 miles (some 48,300 m).

In making the assumption about the DN dependence on M, the author reasoned as follows. At

an M value of 1.0 g m-1, the corresponding value of D, Is typically equal to .01 mm (10 gim). This

becomes one "tie point" of the assumption. At the restricted/unrestricted boundary of visibility

classification in synoptic meteorology, one wishes to define a diameter size for DN that is consis-

tent with the number concentration of the larger aerosols of the atmosphere and that is also

reasonably consistent, at the "unlimited boundary," with DN being neither "ridiculously large" or

"ridiculously small," relative to the aerosol distribution. With these considerations in mind, it was

presumed that DN = 0.001 mm (1 pm) at a maximum visibility, V. of 6 miles. This became the

second "tie point" of the basic assumption. Also. it is a point that should be amenable to experi-

mental verification.

The relation of Dý and M was postulated to be of the power function form.

DN = a mb mm. (57)

"For example, some of the major works (in the approximate chronological order of first publication) are those of
Bouguer. Brewster, Tyndall. Clausius. Rayleigh, Helmholtz, Conrad. [19th Century], Trabert. Mie. Wegener. Cabannes.
Ramon, Koschmteder, Angstrom. Rozenberg. and K6hier. 11900-19301, Middleton, Junge. Houghton. Penndorf. Bricard:
Levin. van de Hulst. Duntley. Shifron. Neiburger. Aufm Kampe. and Khrgian, [1930-19601. and Diermendjian. Young.
Beard, Nussenzveig, Bohren, Fenn, Crane. Squires, and Warner. [1960-19901.

1 Fenn. R.W.. Clough. S.A.. Gallery, W.O.. Good. R.W.. Kneizys. F.X.. Mill. J.D.. Rothman. L.S.. Shettle. E.P.. and Volz.
F.E. (1985) Optical and Infrared Propertl.s of the Atmosphere. Chap. 18 in Handbook of Geophysics and the Space
Environment. Jursa. A.S.. Ed.. AFGL. 1-80, ADA 167000.

14 Diermendlian. D. (1964) Scattering and polarization properties of water clouds and hazes in the visible and infrared.
AppL Opt. 3: 187-196

25



For the first "tie point." described above, the coefficient, a. of Eq. (57) becomes, a = 0.01 mm.
For the second "tie point." D' = 0.001 mm when V = 9650 m (6 miles), the corresponding M value,

from Eq. (50). ignoring truncation, is

M= 1.73 X 10' gm'3. (58)

which, when we take the natural logarithm of Eq. (57) and use the M value of Eq. (58), with D .=
0.001 mm. yields b = 0.27, as rounded off to two places consistent with the lack of quantitative

measurements.*

For these a and b values. Eq. (57) becomes

D' = 0.01 MO27  mm, (59)

which is the author's basic assumption of relationship.

8. CONSEQUENCES OF THE ASSUMPTION

The assumption of Eq. (59) affects all of the distribution and totals equations of Khrgian and

Mazin that have been developed thus far. Hence. b :ore continuing our visibility discussion, we
will pause to modify Eqs. (7). (14). (21). (28), and (32) through (38) for conformance with the new

assumption. As before, the equations will be converted "as a batch." without comment.
Thus, with Eq. (59) substituted into these cited equations, the modified versions become, in

sequence.

N,,. DN, N. and N,, versus M

ND) = 1.02 x 101'. M-0 6 2 D2 e 2
00 D M- 0 27 d <_ D < D) No. m mm- . (60)

Dn = .01 M°-27  mm. (61)

(basic visibility assumption)

2.55 x 108 M°'9 rNN= N No. in- 3 . (62)
rM

N = 1.38 x 10"0 M"-°5  No. m 3 mm 1. (63)

The exponent "b" of Eq. (57) is very sensitive in separating situations of -sense" from those of 'nonsense." Descriptive
sense seemingly lies within the range b = 0.27 ± 0.02.
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A,, DA, A. and A versus M

AD = 8 × 108 M' 62 D4 e-20D M 0 2 7  (d < D S Di.) m-' mm- . (64)

DA = 2 D' = 0.02 MO2 7  mm. (65)

0.060 M °.73 rA I
_____ nMl (66)

rM

AD =2.34 M° 46  m-1 mm-1 . (67)

MD. D", and M O versus M

MD= 5.34 x 10l M-0.62 D5 e-200DM-0 27  (d W D5 ) g m- 3 mm-i . (68)

D= 2.5 DN = 0.025 M° 27  mm. (69)

M is the measured, independent quantity.

MD = 35.1 M°7 3  g m-1 mm-1 . (70)

ZD, D'. Z and ZD versus M

ZD = 1.02x 1015 M-0.62 D8 e-200 D M-0.27 (d!5 D!' D,) mm6 mi-3 mm-1 . (71)

D' = 4 D, = 0.04 M 0 "2 7  mm. (72)

0.0803 M- 81 r, mm 6 m-3 . (73)
rM

Z =2.23 M'5 mm 6 m-3 mm- . (74)

An il.ustration of the above distribution and totals equations for ND and N.'AD and A, MD and

M, and ZD and Z is provided in Figure 6. The diagrams of the figure are similar to those of Figure

1. The same values of M are used for the individual distribution plots and the plots are for the

condition of no truncation. The isolines of the modal peaks, DA, DM. and D. are indicated by the

dashed lines (DN is not included, since it would confuse the upper plot). As in Figure 1, two sets of

abscissa and ordinate scales are shown, with D in p m (bottom) or mm (top) and the values of the

distributed quantities in .tm bandwidth (left) or mm bandwidth (right). Additionally, for ND and N,

the values are per cm 3 volume (left) or per ni3 volume (right). The distribution equations shown, it

should be noted, require D entry in mm.
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A comparison of Figures 1 and 6 reveals the following about the new D", assumption relative

to the previous.

With regard to number concentration (upper diagrams), the modal peaks of N, are, bserved

to shift to the left and increase value with decreases in LWC. This reflects the fact that the modal

peak of the cloud droplets is rising to merge with the peak of the number of aerosols (condensa-

tion nuclei), which are considerably more numerous in the atmosphere than are the cloud drop-

lets, [see Figure All. Another, auxiliary reason for the rising modal trend with decreasing D, is

that, for a given value of LWC. more small droplets are required to produce the peak than are

large droplets.

The modal peaks of the distribution of projected, cross-sectional area (second diagrams), shift

leftward. toward D = 0. and downward, with decreasing D'. Also. except for the M = 1.0 g m '

curves (which are common for both Figure 1 and Figure 6). the total A values are larger for the

new assumption, than for the previous, and the maximum visibilities, V, are correspondingly

smaller.

There is little to say about the M1, and Z7, distributions of the lower diagrams othcr than that

the modes progressively move downward toward zero with decreasing LWC. as for A,,. However.

the total Z values are smaller than previous, unlike the A values.

With respect to the truncation situations for cloud physics instruments that were illustrated

in Figures 2 and 3, it is seen from Figure 6, in analogy, that "hot wire type" inqtruments tend to

be -more attractive" for measurements under the new conditions portrayed. Conversely. the PMS,

1DC, and 2DC instruments tend to be "less attractive."*

9. VISIBILITY RECONSIDERED

The basic assumption of Eq. (59) affects the previous visibility equations as follows.

From Eq. (50). the Khrgian-Mazin form of the general Trabert equation for recognition visibil-

ity becomes

16.67 M 073 In (I /) rMV=m (75)

k,, r

and the equation for maximum visibility becomes

16.67 M-0.73 rM V = m.(76)

rA

from Eq. (51).

* it will be noted that the author has made no prior reference to the PMS. SSSP and FSSP cloud instruments, also

commercially available. These instruments, which operate on the principles of the side and forward scattering of light
caused to impinge on the cloud droplets (or ice crystals), are subject to many of the very same diffractive and scattering
effects that. In visibility studies particularly. we are attempting to determine. Thus. the instruments are of questionable
value In a comparative study such as the present.
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9.1 Descriptive Nomograms and Examples of Common Visibility Experience

A nomogram illustrating the solution of Eq. (75) is presented in Figure 7. The nomogram is

similar to that of Figure 5, except that no scale of E is included at the bottom. Truncation is

ignored. as before. A vertical scale of D, (in urn) has also been drafted in Figure 7. to the left of the

M scale. The D' values indicated are of interest but they do not directly enter the nomographic

solution of Eq. (75). The instructions for the use of the nomogram are the same as explained

previously, relative to Figure 5.

This nomogram reveals the improved description of visibility resulting from the incorporation

of Eq. (59). The D' values are in reasonable a,:cord with gradual merging of cloud droplet distribu-

tions into the size distributions of aerosol particles (also with a merging of mass contents). The V

values along the M scale, which as in Figure 5. are the values indicated on the V isolines, conform

with Eq. (76). For common M and contrast values, it is seen that the visibilities of Figure 7 are

appreciably smaller than those of Figure 5. Moreover, the visibility isolines are "shaped differ-

ently" for increasing values of contrast.

The Figure 7 nomogram also reveals that very-small visibilities, of 2 m or so, are realized only

under the "absolute worst' of seeing conditions, in which the LWCs are large. the extinction ratio

is large, (as when looking in the direction of the sun). and the contrast between viewed objects

and background is small. On the other hand, large 1'isibilities occur with small LWC. with small

extinction ratio, like looking cross sun, and with gooc contrast conditions for objects viewed.

For the convenience of aviation and synoptic-meteorological interests, a companion nomo-

gram to Figure 7 is provided in Figure 8, in which the visibility isolines are scaled in feet and

miles. The threshold boundaries defined as "restricted" and "unlimited" are emphasized and

labeled "R6" and "U30." A third isoline is also emphasized, labeled "D-2000." This is the " decision

range" (important in aviation meteorology) at which an aircraft pilot, attempting to land under IFR

conditions at a Category II airport (the most common) must decide whether to make the attempt,

or not.*

The two nomograms just cited describe the situation of recognition visibility, which involves

the ability to recognize objects seen. It is equally important to describe the situation of discern-

ment visibility, which involves the "first discernment" of objects seen vaguely and dimly at the

limits of human visual . iity.

As demonstrated in Section 6.2, Eqs. (54) and (55), discernment viewing for the KM distribu-

tion function is 3.91 times larger than recognition viewing under comparable contrast conditions.

Thus, the equation for discernment visibility becomes

65.3 M•-73 In (1/c) rM

VD = 63 M (77)
k. rA

from Eq. (75), and the equation for the maximum visual range becomes

* The decision range for IFR (Instrument Flight Rules) approach to a Category I1 airport is governed by the pertinent
FAR't (Federal Aviation Regulations), IFR g 1. 116h, IFR §91.189c and Appendix A. Paragraph 3. Sub-Paris 2 (iv) and 4.
The trigonometry and length unit conversions required to convert these rules into terms of "decision range" are the
authors' own. The range distance is "rounded off' to the nearest 100 feet. The above rules are conveniently provided in the
AOPA (Aircraft Owners' and Pilots' Association) publication entitled "AOPA's Aviation USA."
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D 65.3 M-0.73 rM (78)rA

from Eq. (76).

The nomogram of Figure 9 illustrates the discernment ranges to be anticipated under the

viewing conditions of Eqs. (77) and (78). The nomogram is similar to that of Figure 7, except that

the isolines are now in terms of discernment visibility, VD (in meters). The values of maximum

discernment, VD, are indicated along the vertical M scale at the places where the isolines intersect

the M scale.

For applications, the nomogram of Figure 10 is provided, which is identical to Figure 9,

except that the isolines of VD have been drafted in feet and miles, analogous, and comparable to,

the isolines of Figurr- 8.

The discussion : the significance of these nomograms will be limited to a comparison of

Figures 8 and 10. Such comparison will more closely relate to, and provide examples of, our

common, everyday seeing experiences, than will the other nomograms.

First of all, let us consider a synoptic weather observer who is required, on a given day, to

report or not report the mandatory "visibility restriction" of 6 miles. In his report, does he subjec-
tively -think" in terms of discernment or recognition? There is a possible factor of 2 (- 1/2 of 3.9 1)

uncertainty involved in his report based on his personal way of thinking, as demonstrated by

Figures 8 and 10. This is an intolerably-large uncertainty that can be immediately reduced by

defining new standards of operational requirements.

Next, let us consider an aircraft pilot on final IFR approach to a Category 11 airport. Does he

make his decision based on his first, vague view of the runway touchdown block (with its white

stripes) or on his full and complete "recognition" of the block, stripes and runway? The answer

probably lies "somewhere between." But it indicates how the pilot uses both of his visual skills (of

discernment, first, followed by recognition); combined with his personal safety standards, to effect

a satisfactory landing. This, too, is demonstrated, comparing Figures 8 and 10.

Finally, although numerous other examples of common experience could be cited, let us

consider the viewing problem of a deer hunter on a somewhat foggy morning. His problem, if he is

reckless, is to discern, as he walks through the woods, whether the living object ahead is a deer.

as opposed to a farmer's cow, a bear, a moose, or another human being. Such reckless hunters

exist and "shoot" on discernment. On the other hand, a cautious, legally-concerned, deer hunter

will move/creep forward, until he can definitely recognize that he is stalking a deer and that the

deer is a buck (legal) as opposed to a doe (illegal). The nomograms of Figures 8 and 10 indicate

that if the visual situation of the morning is governed by a LWC of 0.01 g m-3 . a contrast condition

of In (I /E) = 0.2 (contrast in the forest setting is "rather poor") and an extinction ratio of k, = 1.5,

the cautious deer hunter will first discern the deer at a range of about 800 feet and will then have

to move some 600 feet forward to his recognition that it is a legal buck.

The author trusts that he has made his point, about the reality of the two distinct types of

viewing that humans, and all other living things with eyes, commonly experience daily and use

routinely without any questions of definition or quantitative expression of definition. He also

hopes that citing the examples versus the nomograms has provided instruction about the signifi-

cance of the nomograms.
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9.2 Comparisons with Other Visibility Studies

Visibility concepts and equations were historically developed over the years approximately as

described below. The author uses the word -approximately" because, in his reading of the litera-

ture, he found that the record was not always -clear "

Trabert, in 1901, was probably the first to present the visibility equation

S(79)

where C is a particular constant. M is the liquid water content of the cloud droplets and r is the

radius of the dropleta, (in pm).* The radius. r. is a variable, but Trabert failed to specify its exact

definition. We now know, in hindsight, that the definition depends on the nature of the size

distribution of cloud droplets and on the statistical procedures that might be used to obtain some

measure of an -average."

Following Trabert, there was much discussion in the literature about the value of C in his

visibility equation. For example. Conrad"' (1901), also Wagner&9 (1909). determined the value to

be 2.9. Richardson 4 0 (1919) found a value of 5.8 and Kohler"' (1927) obtained a value of 3.05.

Kohler 42 (1929) presented a revised value of 6.1. questioned the invariability of the constant and

stated "that C in reality should be a function of cloud density." Strattun and I Ltiglhton." (1931),

from the work of Mie' (1908), Debye 4' (1909) and Koschmieder2l-"('(1924a. 1924b) found that the

value should be 2.6, smaller than previously suspected.

The main channels of developmental thought leading to enhanced understanding of visibility

flowed largely from the work of Koschmieder. and of Stratton and Houghton.

* It may be that the historical record of vis4ihilitv theory predates Trabert and that he merely extended the prior work of
Helmholtz3 2 11896). Rayleigh4" (1899) and/or ,thers.

SConrad. V. (1901) Uber den Wassergehalt der Wolken (Water content of clouds). Denkschrift Math.-Naturwiss. K.
Akad. d. Wiss.. 73:115-131.

W" Wagner. A. (1909) Untersuchungen der Wolkenelemente auf dem hohen Sonnblick. Meteor. Z.. 26:371.

• Richardson. L.F. (1919) Measurements of water in clouds. Proc. Roy. Soc. London. A. 96:19-31.

4' K6hler. H. (1927) Zur kondensation des wasserdampfes in der atmosphare (On water in the clouds). Geophils. nhibl.. 5.
S.o. 16 pp.

4 K6hler. H. (1929) Wolkenuntersuchungen auf dem Sonnblick in Herbst 1928. Meteor. Z.. 46:409-410.

4.1 Stratton. J.A.. and Houghton. H.G. (1931) A theoretical investigation of the transmission of light through fog. Phys.

Rev.. 38:159-165.

', Mie. G. (1908) Beltr~ge zur optik traber medien. speziell kolloidaler metallosungen. Arm. Phys.. 25:377-445 (IAipzigj.

"44 Debye. P. (1909) Der lichtdruck auf kugeln von beliebigem material. Ann. Physik. 30:57-136.

2" Koschmieder, H. (1924) Theorie der horizontalen sichtweite. Beitrdge zur physik der.freien atmospheire. XU1:33-53.

o Koschmieder. H. (1924b) Theorie der horizontalen sichtweite It: kontrast und sichtweite. lkcitrage zur phy sik der.freien
almosphare. XU: 171-18 1.

32 Helmholtz. H.L.F. von (1896) Handbuch derPhysiologischen Optik. Hamburg und Lecipzig.

4" Strutt. John W. (Lord Rayleigh) (1899) On the transmission of light through an atmosphere containing small particles
in suspension, and on the origin of the blue of the sky. Phil. May.. 47:375-384. Also, (1903) SOt Papers IV. 397-
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Koschmieder did not deal directly with visibility, per se. Rather. he considered the effects of

contrast on visibility. He found that the effects were governed by In (1 /), where f is an "extinction

quantity." He also established that optimum contrast-best seeing conditions-would occur for a
perfect black-body-absorber contrasted against a perfectly white background. He then deter-

mined, from theoretical work, self-conducted experiments and reference to the findings of
Helmholtz (loc. cit.). that E. at the "threshold of contrast," when black and white blend together

and can no longer be distinguished, has the value E0 = 0.02, or In (1/d) = 3.9 1.
Koschmieder thus provided the equation

In (1/E)
Vr= m, (80)

where a is the back-scattering cross-section of the cloud droplets.

For Koschmieder's threshold of contrast value of E = E = 0.02, this becomes

3.91
Vr= m. (81)

or

Koschmieder was apparently unaware of the visibility equation of Trabert. There is no refer-

ence to Trabert in either of his papers.

Because of the lasting influence of the contributions of Stratton and Houghton to visibility

theory, their assumptions and work leading to the development of their form of Trabert's equation
are described and discussed in Appendix C.

In essence. (summarizing Appendix C) Stratton and Houghton (SH subsequently) assumed (I)
a monodispersed distribution of cloud droplets all of common size. From the work of MieI" (1908)

and Debye"4 (1909). they assumed (2) that the extinction ratio, k,, of previous reference, had the
value 2.0. From Koschmieder's work, theyassumed (3) that visibility could best be described by

the Koschmieder "threshold of contrast" value of f = 0.02 (which we now know is the -threshold

of extinction" for discernment viewing).

From these three assumptions, SH determined that Trabert's equation should be written as

2.6 r
V= _ m, (82)

M

where r is the droplet radius for any given monodispersed population.

Unknowingly (hindsight is a good teacher), SH. by their assumption that contrast in visibility
could best be handled by the simple specification of a constant threshold of contrast, eliminated
the possibility of investigating the effects of variable contrast in the manner described by

Koschmieder.

" Mie. G. (1908) Beitrige zur optik trOber medien. speziell kolloidaler metallosungen. Ann. Phys.. 25:377-445 (Leipzig).

" Debye. P. (1909) Der lichtdruck auf kugein von bellebigem material. Ann. Physik. 30:57-136.
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There were numerous followers of SF1. all of whom used the third Stt assumption of constant
contrast threshold. Most also used the second assumption. Few questioned the validity of the

assumptions.

Investigative attention after SH thus focused primarily on the first SH assumption and on

how droplet size distributions differing from monodispersed might effect the Trabert constant.
Aufm Kampe4'- 47 (1950a. b) examined his aircraft-acquired visibility data and the data of

Diem45 (1942) and concluded that the St1 visibility equation was essentially correct, without

change.

Aufm Kampe and Welckmann"' (1952), after considcration of available information, concluded

that the Richardson4" (1919) form of Trabert's equation, that is.

5.8 e
V = - M. (83)

M

which had been used previously to determine LWC from measurements of visibility and droplet
radius, was unsuitable for such application. They noted that. since the Trabert "constant- tends
to increase as the droplet size spectra -broaden." the Stratton-Houghton Eq. (82). as modified to

2.6 f
V= m. (84)

M

where f is a mean radius, might be used, with caution, for "narrow" spectra. But, with spectrum

broadening. the constant would tend to increase from 2.6 toward Richardson's 5.8. Such a spec-

tral broadening effect is verified in Appendix C. where the effect is discussed specifically.

Middleton) (1952). among other things, questioned the threshold of contrast value of
Koschmieder. He emphasized that disagreements about this threshold were inevitable and

pointed out that Houghton5" (1939). from his investigations in fog, had deduced that 0 = 0.06.

Shallenberger and Little"2 (1940) experimentally determined a value of 0.032. Bricard& (1939)

' Aufm Kampe. H.J. (1950) Visibility and liquid water content in clouds in the free atmosphere. J. Meteorol.. 7:54-57.

17 Aufm Kampe. H.J. (1950) Visibility and liquid water content in clouds in the free atmosphere. J. Meteorol.. 7:166.

"• Diem. M. (1942) Messungen der grosse von wolkenelementen I (Measuring the size of cloud elements). Ann. der
Hydrogr.. BdI-. 70.

"' Aufm Kampe. H.J., and Weickmann. H.K. (1952) Trabert's formula and the determination of the water content in
clouds. J. Meteorol.. 9:167-171.

4" Richardson. L.F. (1919) Measurements of water in clouds. Proc. Roy. Soc. London. A. 96:19-31.

A Middleton, W.E.K. (1952) Vision Through the Atmosphere. Univ. of Toronto Press. Toronto. 105 pp.

•' Houghton. H.G. (1939) On the relation between visibility and the constitution of clouds and fog. J. Aer. Sci.. 6:408-
411.

1 Shallenberger, G.D.. and Little. E.M. (1940) Visibility through haze and smoke and a visibility meter. J. Opt. Soc.
Amer.. 30:168-176.

Bricard. J. (1939) Etude de la constitution des nuages au sommet du Puy-de-Dome. Metorologie. 20,. II-IV. 83-92.
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obtained values from 0.0077 to 0.025. Douglas and Young4 (1945). from measurements with a

photoelectric telephotometer. found 0.055. BlackwelPl (1949). investigating the calibration of his

"disappearance range gauge." reported that E had to exceed 0.02.

Middleton, during the 1950-1951 period, conducted his own experiments to determine E.

Using a baffled photoelectric telephotometer. he stationed 10 observer airmen (at various ranges,
presumably) to report the contrast between a "mark" and the sky background. Supposedly. a

scale of contrast had been devised. This "mark contrast information." combined with that of the

telephotometer, provided values of E. Middleton found, from 1000 observations, as he stated. "an

enormous range of E values." The median value was 0.031 and the data revealed variation from
0.005 to 0.155. Middleton also analyzed 285 observations acquired by Howell (unpublished) at

Mount Washington and obtained similar results.
Such variability, however, does not invalidate the Koschmieder value of E = 0.02 for a perfect

black body absorber contrasted against a perfectly white background. It merely means that the

contrast "marks" and background references used by Middleton were less than perfect, in varying
degree, and for those E values he deduced to be smaller than 0.02 (implying a "better than per-
fect" contrast situation), there were possible errors of observation, measurement, analytical

assumption, or computation.

Atlas and Bartnoffl (1953) verified and extended the Aufm Kampe/Weickmann work on

spectral broadening. They domonstrated that the Trabert constant "had preferred values in

natural clouds ranging from 3.3 for fair weather cumulus to 4.8 for nimbostratus." They found

that visibility could be described better by the equation

KpD 0
V = m (85)

M

in which Do is the median volume diameter of the LWC distribution, p is the density of liquid

water and K is a coefficient that is nearly independent of the breadth of the cloud droplet spectra.

They worked with the distribution histograms of the multicylinder method [used by Clark5 7 (1946)

and Houghton 5 (1951)]. to develop their equations. In particular, they found that K = 1.2 was in

good correspondence with the 65 data observations of Diem5" (1948) over the range of spectral

breadths that occur in natural clouds.

SDouglas. C.A.. and Young. L.L. (1945) Development of a Transmissometerfor Determining Visual Range. U.S. Dept. of
Commerce. C.A.A. Tech. Div. Rep. No. 47.

51 Blackwell, H.R: (1949) Report of progress of the Roscommon Visibility Tests, June 1947-Dec. 1948. Paper read to the
Aviation Lighting Comm. of the I.E.S., Washington. Apr. 21, 1949.

' Atlas, D.. and Bartnoff, S. (1953) Cloud visibility, radar reflectivity and drop-size distribution. J. Meteorol.. 10:143-
148.

Clark. V.F. (1946) The multicylinder method. Mt. Washington Mon. Res. Bull.. 2, No. 6.

Houghton. H.G. (1951) On the physics of clouds and precipitation. Compendium qf Meteorology. American Meteorologi-
cal Society. Boston, 165-181.

"I Diem. M. (1948i Messungen der grosse von wolkenelementen II (Measuring the size of cloud elements). Met. Rund., Bd.
1. 261-273.
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When K = 1.2 1- substituted into Eq. (85). when p (= 106 g m I) is evaluated and when Do is
expressed in gi m, there results

1.2 Do
V= m (86)

M

which is the Atlas-Bartnoff form of Trabert's equation. Incidentally, the assumption of k, = 2.0 is

incorporated in the equation, in accord with the second assumption of Stratton and Houghton.

Johnson 25 (1954), from scattering theory. demonstrated that

In (I/e)
Vr = m, (87)

is the defining equation for visual range. This is the same equation originally developed by
Koschmieder (loc. cit.) which, for Koschmieder's threshold of contrast value of F = E0 = 0.02,

becomes Eq. (81).
Johnson, among the others, questioned the significance of the e = 0.02 threshold assumption

and saw little justification for its use. He postulated that some other threshold value, rather than
that for a black body, might better describe visual range in the real atmosphere. But he couldn't

define an appropriate alternative.

Johnson also questioned the practice of virtually all authors reviewed herein of assigning k,,
in their development of visibility equations, the value 2.0. From diffraction theory and Mie theory,

he pointed out that k, would have the value 2 only under the condition D/X < 10. where D is the

droplet diameter and X is the wavelength of the incident light. However, for D/X > 20, k,, would be
1.0. Thus, k. should vary from I to 2 over the normal size range of cloud droplets.* To express

this another way, the "diffractive fringes" arbund cloud droplets, which increase their apparent
size, will be larger for small droplets than for large droplets.

Johnson failed to consider the solar diffractive effects that are commonly observed as corona/
glory phenomena. These, in the author's opinion, might increase values of k,, to as much as 4. or

so, if an observer is looking in the solar direction, or to 2, or so, in the anti-solar direction.

Johnson did not present a visibility equation but his work is of inestimable value to the

theory.

This is the final paper that will be summarized here. We turn now to the principal topic of
this section, which is a comparison of the visibility equation of the present report with the visibil-

ity equations of the investigators just cited. The equation of Koschmieder [Eq. (80)1 cannot be

considered, since it is not a visibility equation in terms of M.** This leaves the equations of
Richardson, of Stratton and Houghton. and of Atlas and Bartnoff. The Richardson equation is

* The author agrees with the logic of these statements of Johnson but not the details. There seems to be an inadvertent
factor of 10 discrepancy in his D/X value. It should probably read D/X < 1. which, reference Appendix B. Figure BI and
Table BI. would make -better sense." The "weightings" that Johnson placed on other components affecting k., reference
Eqs. (44) and (46). are also unknown factors.

*0 This Is irrespective of the Johnson assertion that the equation is definitive. Koschmieder did not develop r in terms of
LWC and scattering ratio. Johnson did.

25 Johnson. J.C. (1954) Physical Meteorology. New York Technical Press, MIT and Wiley, 393.
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included because it represents a possible upper bound to spectral broadening and may be com-
pared with the equation of Atlas and Bartnoff.

We must now establish -comparability" among the KM Eq. (75) and Eqs. (82). (83). and (85).
For a monodispersed distribution of cloud droplets, the modal diameter is the diameter.

Thence, the droplet radius r is related to DN as

DNr Nm. 
(88)

2

For distributions of narrow spectral breadth, close to monodispersed, r in the above equation

may be replaced by i, without sensible error.
For the KM distribution function, the modal diameter of the LWC, or MD, distribution is given

by Dý = 2.5 DN [Eq. (17)] and Do is usually about 1.2 times larger than DM. Thus. for the KM

distribution.

Do = gim. (89)

The droplet size distributions of the multicylinder method, referenced by Atlas and Bartnoff,
resemble the KM distributions. Therefore. it is presumed that the relation of Eq. (89) applies to
the Atlas-Bartnoff visibility equation as well. Departures from the true relations should be rela-

tively minor.
Thus, establishing comparability of droplet size among the previous and present visibility

equations is relatively easy. The difficult part is to convert the present equation into some degree
of "best correspondence" concerning matters of the definition of maximum "visibility/visual
range" limits, of extinction ratio and of the normal, to be anticipated, "average contrast- of objects

viewed. Proceeding along these lines, and neglecting truncation, the present visibility equation,

[Eq. (75)], may be rewritten for the limit of discernment seeing, E 0 = 0.02, as assumed by all the
others, to obtain the equation [Eq. (77) without truncation]

65.3 In (I /E)Vo = m, (90)
k M° 73

(

in which DN = 10 gim at M = I g m-3 is "built into" the equation as its "upper tie point." The "M

factor" is placed in the denominator for ease of comparison.
The above equation still contains the extinction term, k,. and the contrast term, In (1 /E).

which do not appear in the visual range equations of the other authors. Consequently, to com-

pare equations, we must assume something about the anticipated values of the factors.
Johnson (loc. cit.) argued that 1• k < 2. so a rough first assumption of average might be k, =

1.5. This applies to looking in the "cross-solar" direction. For looking in the solar direction, an

arbitrary assumption is made that k, = 3.5. (The value should be smaller in the anti-solar direc-
tion, perhaps about 2.0.)

The author feels that an average contrast value, for a variety of objects lying around a 360

azimuth sweep at a typical observing site, might be something like C = 0.8.
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When these k and C values are inserted in Eq. (90).

34.8
VD m.- m (91)M0.7:3

when looking in the cross-solar direction, and

14.9
VD = m ,(92)MO 7:3

when looking closely toward the sun.
The comparable equations of the other authors, when the size conversions of Eqs. (88) and

(89) are accomplished for a D.' value of 10 p m. become

29.0
VD = m . (93)

M

for Richardson,

12.5
VD M m , (94)M

for Stratton and Houghton, and

36.0
Vm = .m (95)

M

for Atlas and Bartnoff.

It should be emphasized that, technically, all of the above equations, (91) through (95). are

equations that describe discernment rather than recognition visibility.
The predictions of these equations are compared in Table 1. for M values ranging from 10-1 to

5 g M 3 . The visibility thresholds defined as unlimited, restricted, and "pilots' decision range" are

indicated to the immediate right of the visual range tabulations by the horizontal black "bars"

identified as "U." "R" and "D." The vertical location of the -bars." relative to the tabulations, has

been "semi-interpolated" between values to provide a more accurate representation of the true

locations of the threshold levels within the table. The common "tie point" for all equations being

compared, of M = 1.0 g m- 3 , is noted by the horizontal strip of screening.

The table reveals that, in general, and irrespective of the exact methods of equaiion determi-
nation by the different persons. there is a reasonable degree of harmony among predictions. The

predictions do not differ wildly. by orders of magnitude. Rather. they differ mostly by factors of

1.2-4 throughout the comparable parts of the table (neglecting present concern with solar ef-

fects). The prior equations undoubtedly served the operational needs of weather-station

42



Table 1. A comparison of the visibility Eqs. (9 1) and (92) for discernment viewing with those of

Richardson (1919). Stratton and Iloughton (1931) and Atlas and Bartnol- (1953). for cloud LWCs

ranging from 10 to 5 g m 1, reference text.

Liquid KM Distribution, as Richardson Stratton- Atlas-Bartnoli

Water pertains to Discernment (1919) Hloughton (1953)

Content Visibility Equation (1931) Equation

Looking Equation

Cross sun Solar direction**

V= V= V V= V=

gi m: n; mn M In m

5 10.7 4.60 5.80 2.50 7.20

2 21.0 8.98 14.5 6.25 18.0

1 34.8 14.9 29.0 12.5 36.0

.5 57.7 24.7 58.0 25.0 72.0

.2 113 48.2 145 62.5 180

. 1 187 80.0 290 125 360

.05 310 133 580 -D 250 720 -D

.02 605 D* 259 1450 625 -D 1800

.01 1000 430 2900 1250 3600
--D

.005 1660 713 5800 2500 7200
-R -R

.002 3250 1390 14.500 6250 18,000

.001 5390 2310 29.000 12.500 -R 36.000
--U --U

5 x 10 ; 8940 3830 58.000 25,000 72.000

2 x 104 17,500 7470 62,500

1 X 10-4 28.900 6660
--R

5 X 109 48.000 -U* 20,600

2 x 10- 93,700 40.100
-U

I x 105 66.600

"* "D" signifies a pilot's decision range. "R" indicates the visibility boundary of restricted/unre-

stricted and "U" symbolizes unlimited visibility.
** For looking in the anti-solar direction. multiply these listed visibilities by 2.
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prediction rather well, with appropriate compensation by the individual stations tor theory versus

reality.
The table shows that the Stratton-Houghton equation is in general best accord with the Eq.

(91) predictions herein.

There is another way of comparing the work herein with that of previous findings. Consider-

able effort was expended in the past to establish the characteristic droplet sizes and "visibilities"

of natural, or internationally-defined, cloud types. This information is available for comparison

and, in fact, can be exploited for immediate application.
The typical, average droplet radii of the internationally-defined, water-clouds identified in

Table 2, as reported by Bricard (1940)6". Diem (1942, 1948)" ,". Borovikov (1949)1'. Aufm Kampe
(1950)46, Lewis (1951)62, Atlas and Bartnoff (1953*)" and Khrgian and Mazin (1963)", are listed in

the data columns of the table. The average droplet radius, by cloud type, for all investigators, is

shown In the last column of the table. (The fact that any single investigator did not report all

types was ignored in the averaging, hence the table is admittedly biased toward those who did.)
The averages of the table reveal a distinct upward trend of droplet radii from the smaller/

thinner natural clouds, that we intuitively suspect to have small liquid water content, toward the

larger/thicker clouds, in which we anticipate large LWC.

In Table 3, the data of Table 2 have been converted from mean radii, r, into modal diameter,

using the equation

DN = 4/3 gim, (96)

which, although applying strictly to the KM distribution function, is also presumed to apply

approximately to the multifarious data distributions and/or distribution functions used by the

other investigators.

From the D' averages of Table 3, the corresponding values of LWC for the different cloud

types were computed from Eq. (59) 1 eversed. The values are listed in the last column of Table 3.**

From these LWC values, we may proceed to a comparison of available measurement data with

available equations.
Aufm Kampe (loc. cit.) provided aircraft-measured values of visual-range obtained from flight

through the several types of internationally-defined, water clouds indicated in Table 4. To obtain

his range measurements, Aufm Kampe used a light with a parallel beam that was mounted on

one wing tip of his reasearch aircraft. A receiver, consisting of a selenium photronic cell, was

* The Atlas-Bartnoff (AB) listings of f in Table 2 represent a "special case." in that AB provided their own equation for r
for the different types cf natural clouds. Their equation and tabulations have been used in Table 2 and the author has
been very careful not t- violate their work.

A question might b. asked as to why these LWC values were inferred from droplet size measurements rather than
obtained from direct LWC measurements. Rarely did previous investigators re ort LWC values by cloud type. and, when
they did, as. for example. Borovikov. et al.. (1963)"' and Lewis (1947. 1951 :'ý the values were presented as ranges by
altitude within the clouds, as values versus cloud temperature, as ranges of occurrence frequency. etc. The droplet size
data. on the other hand. are more plentiful. specific and tnrstworthy.

"I Boro'rikov, A.M. (1949) Nekotorve rezul'taty izucheniva oblachnvkh elenmentov (Some results of a studY of cloud
elements). Trudy Tsentral Aerolog. Obsv.. No. 3.

62 Lewis. W. (1951) Meteorlogical aspects of aircraft iWing. Compendium of Meteorology. Amer. Meteor. Soc.. Boston.
1197-1203.
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Table 2. Average droplet radii for natural cloud types as reported by different investigators.

Cloud Bricard•" Diem48' 59 [ o v6l Aufm Lewis"2  Atlas- Khrgian- Average

Type (1940) (1942, (1949) Kamp&e46  (1951) Bartnotl Mazin'3  byType

1948) (1950) oerU.SA (1953) (1963)
Typical Reference

Average Text

gm Am pm Aim Am Am Am Am

Cumuniform

Fair weather

cumulus ...... Cu 4.0 7.8 6.8 4 5.6

Stratocurnulus.Sc 7.6 5.4 8.2 3.5 5.4 7.0 5 6.0

Alto cumulus..Ac 7.1 7.1 7.5 6 6.9

Cumulus

congestus ..... Cg 7.8 6.3 9 7.7

Straitform

Stratus .......... St 4.2 6.0 4.6 6.5 5.4 6.9 6 5.7

Alto stratus...As 5.6 7.1 7.5 5 6.3

Translucidus.."

Opacus ......... 7.5

Nimbostratus..Ns 9.8 6.0 12.0 6.1 8 8.4

o Bricard, J. (1940) Nature des nuages en relation avec les dimensionss des particules qui les constituent. C.R. Acad.
Sci. Paris. 210, 148-150.

ý8 Diem, M. (1942) Messungen der grosse von wolkenelementen I (Measuring the size of cloud elements). Ann. der
Hydrogr.. Bd. 70.

1 Diem, M. (1948) Messungen der grosse von wolkenelementen II (Measuring the size of cloud elements). Met. Rund.. Bd.
1. 261-273.

61 Borovikov. A.M. (1949) Nekotorye rezul'taty izucheniya oblachnykh elementov (Some results of a study of cloud
elements). Trudy Tsentral Aerolog. Obsv.. No. 3.

46 Aufm Kampe, H.J. (1950) Visibility and liquid water content in clouds in the free atmosphere. J. Meteorol.. 7:54-57.

4 Aufm Kampe, H.J. (1950) Visibility and liquid water content in clouds in the free atmosphere. J. Meteorol.. 7:166.

62 Lewis, W. (1951) Meteorlogical aspects of aircraft icing. Compendium of Meteorology. Amer. Meteor. Soc.. Boston.

1197-1203.

1 Atlas. D.. and Bartnoff. S. (1953) Clo'id visibility, radar reflectivity and drop-size distribution. J. Meteorol.. 10: 143-
148.

'3 Khrgian. A.Kh.. and Mazin, I.P. (1963) Cloud Physics. Israel Prog. Sci. Transl.. Jerusalem. 392 pp.
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Table 3. Typical modal diameters for natural cloud types as converted from the original data.

Cloud Bricard° Dienm4 .•59 Borovikov6 l Aufm Lewis"2  Atlas- Khrgian- Average Corres-

Type (1940) (1942, (1949) KampenI (1951) Bartnolfl Mazln'" byType ponding

1948) (1950) ovrU.SA (1953) (1963) KM LWC

Typical Reference

Average Text
D' D,• D' D, D's D, D' N

Pm Pm m Am P m pm pim Pm gnm3

Cumulifform

Fair weather

cumulus ...... Cu 5.3 10.4 9.0 5.3 7.5 .346

Stratocumulus.Sc 10.1 7.2 11.0 4.7 7.2 9.4 6.7 8.0 .439

A:' o cumulus..Ac 9.5 9.5 10.0 8.0 9.2 .736

Cumulus

congestus ..... Cg 10.4 8.4 12.0 10.3 1.12

Stratfform

Stratus .......... St 5.6 8.0 6.1 8.7 7.2 9.2 8.0 7.6 .363

Alto stratus...As 7.5 9.5 10.0 6.7 8.4 .526

Translucidus.."

Opacus ......... 10.0 1.00

Nimbostratus..Ns 13.1 8.0 16.0 8.1 10.7 11.2 1.52

Bricard. J. (1940) Nature des nuages en relation avec les dimensionss des particules qui les constituent. C.R. Acad.
Sc&. Paris. 210. 148-150.

41 Diem. M. (1942) Messungen der grosse von wolkenelementen I (Measuring the size of cloud elements). Ann. der
Hydrogr.. Bd. 70.

, Diem. M. (1948) Messungen der grosse von wolkenelementen II (Measuring the size of cloud elements). Met. Rund., Bd.
1, 261-273.

C1 Borovlkov. A.M. (1949) Nekotorye rezul'taty izucheniya oblachnykh elementov (Some results of a study of cloud
elements). Trudy Tsentral Aerolog. Obsv.. No. 3.

46 Aufm Kampe, H.J. (1950) Visibility and liquid water content in clouds in the free atmosphere. J. Meteorol.. 7:54-57.

"4 Aufm Kampe. H.J. (1950) Visibility and liquid water content in clouds in the free atmosphere. J. Meteorol., 7:166.

12 Lewis. W. (195 1) Meteorlogical aspects of aircraft icing. Compendium of Meteorology. Amer. Meteor. Soc.. Boston.
1197-1203.

w Atlas. D.. and Bartnoff, S. (1953) Cloud visibility, radar reflectivity and drop-size distribution. J. Meteorol.. I0: 143-
148.

Khrglan. A.Kh.. and Mazin. I.P. (1963) Cloud PhyLsics. Israel Prog. Sci. Transl., Jerusalem. 392 pp.
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Table 4. Comparisons of visual ranges among the predictions of Atlas and Bartnoff (1953). of

Equations 91 and 92, herein, and of the measurements of Aufm Kampe (1950)

Visual Range

Cloud Average From Equations Aufm Kampe Atlas and Bartnoff

Type LWC (91) and (92) Aircraft Reference Text

herein Measurements

M Vr Vr Do K(n) Vr

g m-3  m m iim N.D. m

Cumuliform

Fair weather cumulus..Cu 0.346 19-76 40 15.4 1.32 59

Stratocumulus ............. Sc 0.439 16-64 100 15.9 1.91 69

Altocumulus ................. Ac 0.736 11-44 17.0 1.64 39

Cumulus congestus ...... Cg 1.12 8-32 20 14.3 1.68 21

Stratiform

Stratus ........................... St 0.363 19-73 140 15.7 1.39 60

Alto stratus .................... As 0.526 14-56 150 17.0 1 .64 53

Translucidus ....... As

Opacus ...................... As 1.00 9-35 17.0 1.64 29

Nimbostratus ................ Ns 1.52 6-26 13.8 1.72 16

mounted on the other wing tip. The distance between transmitting beam and receiver was 16 m

(52 feet). He used a moving coil galvanometer for a sensor and with computational reference to

the work of Koschmieder (for discernment viewing conditions) he deduced the visual-range results

shown in Table 4 (in the middle column under "visual range"). He noted that engine vibration

caused appreciable uncertainty in his calculations. (Aufm Kampe failed to mention how he handled

the problem of contrast between some sort of "black body reference" and the background.)

To compare with these measurements of Aufm Kampe, we seemingly have only the equation

of Atlas and Bartnoff (loc. cit.) and the equations presented herein.

Atlas and Bartnoff developed the visual-range equation, Eq. (85) herein, that was "partially

discussed" previously. Although they concluded that K = 1.2, in their equation, was the best

value for "clouds of all types," they also provided a table of K(n), or K, values that was "type

specific" and was computed in three different ways. The author has concluded that the column 2

values of their Table 5 are the most descriptive of internationally-defined clouds. Atlas and

Bartnoff did not provide LWC information about natural cloud types, but, this is understandable

since, as the author has noted, such information is extremely difficult to obtain, except by the

indirect methods used relative to Table 3.

From Table 3. it is seen that the "upper tie point of LWC," for the visibility work herein,

namely M = 1.0 g m3-, lies "somewhere within" the natural cloud type identified as nimbostratus
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opaqus.* From this assumption, which is really not an assumption but a mere acceptance of data

findings, the visual range predictions of the Atlas-Bartnoff equation [Eq. (85) herein, with K =

K(n)J can be determined from the LWC. Do, and K(n) values identified in Table 4. Their visual-

range results for natural clouds are presented in the last column of the table.

The visual-range values of Eqs. (91) and (92) are shown in the first column of the table sec-

tion thus identified. The first of the values is for the restrictive situation of looking in the solar

direction [Eq. (92)1; the second Is for the more usual situation of looking "cross sun" [Eq. (91)1.

The table reveals fair agreement (to within about ± 27 percent), for cumuliform cloud types.

between the visual range predictions of Atlas-Bartnoff (AB) and the measurements of Aufm

Kampe (AK). For stratiform cloud types, however, the AB equation appreciably "underpredicts"

the AK measurements (by about -80 percent).

The Eq. (91) values (neglecting the special case condition of looking toward the sun) are also

In reasonable agreement with AK for cumuliform cloud types (to within about ± 50 percent) and

agree with AB (within about ± 22 percent). But, for stratiform cloud types, although Eq. (91)

overpredicts AB (by about + 23 percent), both Eq. (91) and that of AB appreciably underpredict

AK (by about -70 to -80 percent).

The discussion will now turn to consideration of how information about visibility can be used

to obtain values of other cloud physics quantities. A particular example has been selected, as

explained in the following section.

9.3 Estimates of M from V-A Consideration of Uncertainties, Research Needs and Ques-

tions of Visibility Definitions

From the equation listings [Eqs. (60) through (74) in Sec. 81, it is seen that, in theory, it is

possible to employ observations or measurements of visibility to deduce the line integral averages

of the quantities, N, A. M, or Z, along the visibility paths from the observer to the object(s) seen.

In this section, the particular relation, involving the estimation of M from V. has been selected as

an example of the accuracies to be expected and of the relative contributions of the several uncer-

tainty terms (indicating where research efforts are needed). As a serendipitious "spinoff," the

example also reveals an aspect of visibi. .t, theory that has been neglected to date.

The reader who is not especially interested in the mathematical details of uncertainty analy-

ses may skip to the discussion following Eq. (120). in which Table 5 is explained, and the results

are discussed.

The visibility equation of the present report, Eq. (75), becomes, when solved for M,

M = 47.3 [ In (I/) r. ] 1.37g n -3 . (97)V k. rA,

If, for convenience, we define

T, = V- 1.3 7  N.D. (98)

* It also lies "somewhere within" the convective cloud type -cumulus congestus." but the author prefers to relate his
reference to the homogeneous. time-stable, cloud-type "Ns opaqus," rather than to the non-homgeneous. time-variable
type -Cg."
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to be the visibility term.

Tc = Iln (1/-E)!' 37  N.D. (99)

to be the contrast term,

TE = k;-,37  N.D. (100)

to be the extinction term, and

TT= LN.D. (101)

to be the truncation term. then Eq. (97) may be modified to

M = 47.3 T, T, TE TT g m-3 . (102)

where all necessary conversion units are carried in the constant "47.3."

For uncertainty (error bound) estimation, Eq. (102) may be totally differentiated to obtain

am am am am
dM= - dTv + dTc +-- dTE + - dTT g m-3 . (103)

aTý GTc nE aTT

This may also be written, in terms of decimal (percentage) uncertainty, as

dM aM dTv aM dTc aM dTF aM dTT
+- -+- +- + N.D. (104)

M VT TV nC TC TI T TT

where FA is the average value of M from Eq. (102).

The right hand terms of the above equation are, respectively, from Eqs. (98)-(102).

aM dTv =V 23S. . .. 1.37 V 2 37  N.D., (105)

aT TV

aM dTc- = 1.37 [in (1/E)10 37  N.D. , (106)

Cr C

aM dT E-M = _ 1.37 k,,-2 3  N.D. , (107)

nE E

and

aM dTT
- -= 1.37 (rM/rA)° 3 7  N.D. . (108)

rT T
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Hence. Eq. (104). written in finite difference terms, becomes

AM AT,, AT ~ ATE03 T
-- = 1.37 -V-2.37 + (In 01/1)° 103 7  -_ k 2 37 _ + . TT gm 3  (109)

This is the uncertainty, or -error bounds," equation tha, applies to the estimate of M values

from observations or measurements of recognition visibility. Such estimates can also be obtained

for discernment visibility but are not considered here.
The average, expected, values of contrast and extinction-ratio (not looking in the solar or

anti-solar directions) were stated before in the report. Hence, when the contrast, In (l/E) = 0.8
and k,, = 1.5 are introduced into Eq. (109).

AM -2.7AT~, AT, ATE 3~7ATT1
71.37 -+ +0.92 - -0.38 --- + -jgm_. (110)1I TV T, T,: -. I TT

The average values of In (I/E) and k, just cited result in values of Tc = 0.74 and TE = 0.57.
from Eqs. (99) and (100). This enables a further simplification of Eq. (110) to

AM [ ATV rM Y3 7ATT
1.37 V- + 1.27 AT, -0.67ATE+ N.D. (111)

We now consider the important uncertainty terms, ATv, ATc, ATE, and ATT. of this equation.

From previous discussion and our present state of knowledge, these may be estimated as follows,

where the estimations are described to the extent required for each.

The visibility uncertainties of Eq. (111) are range-visibility dependent. They are assumed to

obey the approximate equation relationship,

AV =- ± 0.2 V m. (112)

This equation relates to our common visibility experience. It implies, for example, that a

research person, working with a cloud chamber of 15 foot dimension, can detect visibility changes
to within ± 4 feet. It implies that a weather observer, at an airport station, can differentiate be-

tween a visibility of 1/8 mile (660 feet) and 1/ 16 mile (330 feet). It means that an aircraft pilot,
flying at his IFR decision range of 2000 feet, approaching an "obscured" airport to land, has

nervous concerns about landing, because he knows, mentally, that the seeing situation has
uncertainties of about ± 400 feet. It means that a synoptic-scale weather observer can only
predict the defined boundary of -restricted visibility." 6 miles, to within ± 1.2 miles, or the semi-
defined boundary of -unlimited visibility," 30 miles, to within ± 6 miles.

These visibility examples of uncertainty, with which the reader may or may not concur,

should roughly describe everyday experiences in seeing, decision, and prediction.

In view of the above, and Eqs. (98) and (112), the uncertainty term, AT, of Eq. ( 11), becomes

ATv = -1.37 V-2-:17  AV =.274 V1:7 m. (113)
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The other uncertainty terms of Eq. (112) do not share the property of being range-visibility

dependent.

The uncertainties of contrast. In (1/*). can probably, with diligence, be estimated to about
± 0.2. such that ATc. of Eq. (112). becomes

AT, = ± 0.274 OIn (I /e)1 0 .37. (114)

working through Eq. (99).

The extinction ratio, k,,, again assuming that viewing avoids the solar or anti-solar directions,
should be estimable to ± 0.2 (or better, with a bit of theoretical effort). Hence.

AT, =+0.274 k,- 23 7. (115)

from Eq. (100).
The truncation uncertainty ATT really doesn't exist, if viewing is performed by human beings.

Humans have sufficient "bandwidth(s)" in their seeing abilities to trivialize such problems. How-
ever. when instruments are used to measure visibility, truncation limits and uncertainties can be
important. For the moment, it is assumed that

ATr = 0. (116)

When these uncertainty values of Eqs. (113)-(116) are substituted in Eq. (111).

AM I0.274 V-3. 7 4  1
ll = 1.3 7  + ± 0.348[ln(1/E)]°":7+0.184k"237 N.D.[. (117)

or. from Eq. (98), and since In (I/E) = In (I/E) = 0.8 and k =T1 = 1.5.

AM
M = + 0.375 V-2 37 + 0.439 ± 0.0964 N.D.. (118)

This is the decimal (percentage) uncertainty equation pertaining to the estimation of LWC

from the visibility equation. Eq. (75), of the present report.
For the average values previously mentioned, and from Eqs. (98)-(100), Tv = 1-' 37. Tc = 0.337,

TF = 0.574 and TT = 1.0. When these values are introduced into Eq. (102), the average value of

LWC is given by

I=20.0" V-1-37 g m- 3 . (119)

To be very specific, ft is the path integral average of liquid water content along the line of sight.

Equation (119) may be inserted into Eq. (118) to obtain

AM=+ 7.5 V-374 8.78 V-1 37 + 1.93 VI:37 g m :1  (120)

which is the equation for the absolute uncertainties of M.

51



Values of FA (center column), of the decimal uncertainties (left hand columns) and of the

absolute uncertainties (right hand columns), as computed from Eqs. (118)-( 120). are listed in
Table 5. Four visibility situations are considered in the table and the situations are tabulated in
the order of increasing range, or visibility. These are the same situations mentioned earlier, now
being examined in detail relative to estimates of MA.

It is seen, first of all, from the total of the decimal uncertainties, that the M estimates from

observed or measured visibility are about ±0.55 (± 55 percent) uncertain at all ranges. This
capability can be exploited, now. from current observational/measurement techniques. The
uncertainties might seem large to the reader but it must be emphasized that they are not factors
of 2. or 5 (such as are common in radar meteorology) nor are they orders of magnitude. as might
have been suspected prior to the current investigation. The M¶ values are eminently useful even in

view of the uncertainties.
The second thing the table demonstrates is that the contrast-component contributes about

80 percent to the total uncertainty. This tells us immediately that it is here where research effort
ought to be concentrated to improve the MA vs V estimates. Research work in diffraction theory
can also reduce the uncertainties of the extinction term, as mentioned earlier. It would seem that
such efforts, even minimum, could quickly reduce the FA uncertainties from the present ± 55
percent to perhaps about ± 30 percent. No LWC instrument now in existence can even begin to

approach these measurement accuracies. expecially for very small values of LWC.
It is difficult to understand the finding that the AV uncertainties of visibility assumed relative

to Eq. (112) (which, "on the surface.- would appear to be a reasonable assumption). should
contribute so slightly, termwise, to the total uncertainties of Eqs. (118) and (120) as listed in
Table 5. The explanation lies, of course, in the large negative exponent on V that appears in the
first term of Eq. (117). But. the finding is 'bothersome." It would seem that some aspect of visibil-

ity theory that is important to understanding may have been neglected.
This "aspect." in the authors' opinion, is a consideration of the visibility situation of a per-

fectly clear day devoid of any cloudy obstructions. How do we consciously or unconsciously define
"visibility" on such day? The visibility equations developed herein do not tell us. yet this is a very
important "limiting case" that may enhance our knowledge.

The matter is explored in the following section.

9.4 Discernment and Recognition Ranges, Corresponding Visibility Eqviations and

Summary of Visibility Findings

There are four quantities that are obviously involved in the "recognition" of an object under

clear-air conditions:
1. the size of the object viewed.

2. the range from which it is viewed.

3. the contrast of the object relative to its immediate surroundings.
4. the detailed features that exist on or are a part of the object (shape. protuberances,

depressions, holes, marks, lettering. etc.) the viewing of which, at some subjective "level of
detail" is regarded as "recognition."*

1There is a fifth quantity that is also involved here. This is a loss of resolution due to optical aberration (scintillation)
caused by atmospheric turbulence, which is highly dependent on the time of day. location and line of sight. The effects act
to reduce contrast: hence reduce visibility.
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The equation that describes the 'recognition range" is

RR = C s fln 0I/0 m. (121)

where s is the object size, in meters, In (I /E) is the contrast, [following Koschinieder (loc. cit.)]

non-dimensional, f is the "feature ratio," non-dimensional, and C is a constant to be evaluated.

also non-dimensional. The equation is logical in that RR is anticipated to increase directly with

increasing object size and contrast. The logic of the direct dependence of R. on f will be explained.

Equation (121) is "object specific." which means that we must have selected the object, know

its size and, most importantly, know its feature details, as parameterized by f, and its contrast,

relative to background.

The feature ratio f is the ratio of feature size to object size. Thus,

f= sf N.D.. (122)

where s, is the feature size (or an average or predominant size).

The value of f varies from its maximum value of 1.0. when feature size equals object size, to

some small value that could even approach zero, such as in the case of visually examining the

grain structure of a rock to identify its geological classification (without microscope). However. in

common visibility experience, the actual f values should seldom be smaller than about 0. 1 or so.

This implies that the feature sizes required for recognition would be larger than one tenth the size

of the object.

An f value, larger than 0.1 does exist, however, that would reflect a "level of detail" (or f value)

that we commonly, but unconsciously, use in our everyday involvement with "recognition." Such

average, typical f-value, of consensus agreement, can be determined (as will be demonstrated).

Thus, f, in Eq. (12 1), would be a constant for "general viewing" but would be a variable, when

describing "particular situations."

The logic of the direct dependence of RR on f, in Eq. (12 1), now becomes apparent. The rela-
tion says that increases in the feature size(s) of an object (increases in the f values) will result in

corresponding increases in the recognition range.

To obtain approximate information about the discernment/recognition ranges and feature

ratios involved in clear-air visibility, the author conducted a series of paperwork exercises and

experiments to estimate the values for various situations.

The situations considered included cases of the discernment and recognition

I. of insects versus other insects or small objects,

2. of a cat versus a skunk versus a rock, and analogous cases,

3. of coin types contrasted against various backgrounds,

4. of a known person versus another.

5. of a human being versus other similar-size animals or objects.

6. of a buck deer from a doe-the hunter's problem,

7. of a road sign on the highway or in a city,
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8. of various objects seen ahead while driving on a highway,

9. of objects viewed downward from a tall building.

10. of various types of aircraft flying aloft,

11. of various types of ships observed from the seashore,

12. of one city building from another observed from the ground,

13. of one particular mountain from another observed from the ground,

14. of a city feature observed from an aircraft or space vehicle,

15. of smaller features on the moon as opposed to larger features, as observed from the earth

(without telescope),

all of these, plus other cases.*

From these subjective exercises, two ratio quantities were determined and -compensated" for

the important effects of contrast. For example, one may assume that contrast, no matter what its

value might be in a given situation, will be approximately the same for both discernment and

recognition visibility. Moreover, one can deliberately (in the exercises) silhouette objects against a

sky or other background of one's "mental choosing" and/or "adjust" a poor contrast condition

into conformance with the optimum contrast value of In (1 /E) = 1.0.

The discernment ratio, l 1)/s. is by far the easier of the two ratios to assess. It was found, from

the exercises, that the ratio had the approximate value

R/s _= 3300 N.D. , (123)

with an estimated subjective-departure-uncertainty of about ± 30 percent**.

The recognition ratio, Rr,/s, was found to have the approximate value

RI%/s =- 1200 N.D., (124)

with an estimated subjective-departure-uncertainty of about ± 50 percent.
It follows from the approximations (123) and (124) that

R1 , 2.8 Rr, (125)

in any consistent length units of choice.

The approximate value of C, in Eq. (121). can now be ascertained from Eqs. (123). (124), and

(125).
As mentioned earlier, the value of f, in Eq. (121), assumes its maximum value of f = 1.0 when

the feature size of objects equals the "bulk size" of the objects themselves. Expressing this

* The author will not attempt to describe these "discernment and recognition exercises" beyond stating that they
occupied his time over many days. fie considered each case. individually, in fair depth. as objectively as possible. before
drawing conclusions about the specific case. I le also resorted to maps. personal measurements and experiments, journal
and media items and just plain -common sense." in his attempts to convert the subjectivity of our universal viewing
experiences into some form of "quantitivity."

** The constant here has a value close to the visual acuity limit (of optical theory) for dlistingu nishing two black points on
a white background as opposed to seeing them as one blended point. Thompson, (I larper and Row, NY, NY. 32nd Edition).
The limiting, solid angle of view is 1/60 = 0.000291 radian. for which the above constant would be 3440.
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another way that is equally true (but not precisely the same), when f = 1.0. an object may be
"discerned" by its bulk size but it cannot be "recognized" by its features. Thus, for "discernment

visibility in clear-air," Eq. (121) becomes

R, = C s In (l/E0 m, (126)

which, solved fo. 1, is

C = N.D. (127)
s In (l/E)

If the discernment range of Eq. (123) is substituted into this equation, and if the contrast is

assigned its maximum, reference value of In (I /E) = 1.0.

C = 3300 N.D. (128)

On the introduction of this value into Eq. (121).

R,_=_ 3300 s f In (I /g) m1 (129)

which is the approximate general equation defining the recognition range of objects in terms of
object size, feature details, and contrast. This is thefirst of the final equations that will be illus-

trated.

When f = 1.0. in the above equation, it reduces to the approximate general equation that

defines the discernment range of objects viewed, that is.

R_3300 s In ( l/E) m. (130)

This is the second final equation to be illustrated.
The reader will intuit that there is an implied "f value." in Eq. (129). that corresponds to the

author's work on his "discernment/recognition exercises." Indeed there is, and this value, from
Eqs. (123) and (124). with reference to Eq. (129), has the approximate va'ue

R.
f = - 0.36 N.D., (131)

R.

which means that the recognition of an object under "average" viewing conditions requires that
the features of the object should be roughly one third the overall size of the object.*

The three approximateŽ equations. Eqs. (123), (124). and (131). are obviously interrelated and

all were considered in the recognition exercises, together with Eq. (12 1). It should additionally be
noted that the feature ratio of recognition is not completely divorced from contrast differences
that also enable recognition, particularly color contrasts (for example. recognizing various kinds

of birds, or a wheat field from a corn field observed from a space vehicle, etc.).

* From optical theory, for the definition of 20/20 vision, f = 0.20.
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To summarize "adings to this point, Eq. (126) provides information about the "discernment

range" of objects viewed in clear air and Eq. (129) provides inlbrmation about the "recognition

range" of the objects. Both equations are "object specific" and the discernment range for equiva-

lent contrast conditions is 2.8 times greater than the recognition range.* The values of the con-

stants are approximate, but useful nonetheless.

We may now consider how the discernment and recognition ranges can be defined for cloady

situations of the atmosphere, for which clear-air viewing become special limiting cases of maxi-

mum discernment visibility and maximum recognition visibility. It is necessary, symbolically, in

equations and in practice, to differentiate between clear-air viewing, which will be referred to in
terms of range (as has been the case thus far), and cloudy viewing, which will be referred to and
symbolized in terms of visibility, with VD, being the discernment visibility and V being the recogni-

tion visibility. ('The terms "range" and "visibility," here, are interchangeable, since visibility is a

range quantity.)
A "tie" (or "tie point") may be established between the clear-air Eq. (130) written for the maxi-

mum discernment range (In I/e = 1.0). that is.

R1 ),, = 3300s m (132)

and the equation for the maximum discernment visibility

46.8 rM (133)
I)II1 M O 73 rA

which stems from Eq. (76) multiplied by 2.8 (reflecting the finding herein of E,. = 0.06. not

Koschmieder's F = 0.02 of theoretical perfection-see footnote, this page) and also written for

In (l/E) = 1.0. Eq. (133), of course, incorporates the distribution function of Khrgian and Mazin.

The next step involved in the specification of a "tie point" between clear and cloudy Xisibility

requires a definition of "clear-air." Fortunately. such a definition has already been provided in the

form of the visibility condition called "unlimited." Consequently, clear-air visibility exists when the

maximum discernment visibility, R[ý. of Eq. (132), is

R, = 30 miles=-- 48,300 m. (134)

This means, from Eq. (133), neglecting truncation, that. when V,, = R,,

MC = 7.43 x 105 g m3. (135)

In Section 6.2. Eq. (55). it was demonstrated that the "visual ranges" for discernment viewing were. from the work of
Koschmteder Iloc. cit.). 3.91 times larger than the visibilities for recognition viewing. The work herein indicates that tl,(
difference factor is 2.8. not 3.91. Koschmieder stated that his "threshold of pe'rlect contrast- valoe of was f, = 0.02. for
which In (11/,) = 3.91. The work herein implies that the "threshold of commont expcrieorie" (not the theoreticallv perfect
condition of Koschniieder) is approximnately c, = 0.06, for which In (I /E ) = 2.8. This corresponds precisely to thie c = 0.06
value deterninied by Houghton'n(1939). The entire subject of referenct E values has been discussed in Seclion S.'2 and
will not be rediscussed here.

51 Houghton, 11.G. (1939) On the relation between visibility and the constitution of (0loi1s and fog. ,J. Aer. Sri.. 6:408-
411.
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where M. is the LWC (or the mass content of aerosols, or a combination) that defines the clear-air

state. It also means that the size of the object being viewed at this range is

sc = 14.6 m, (136)

from Eq. (132).

The effect of the introduction of s into the equations for cloudy visibility will be, in essence, to

"modify" the liquid water content entering Eq. (133) from M to

Mm', = K M s 1'37 gm-3 . (137)

The constant, K, as determined from the "clear-air tie point," at which M.,= M and s =

14.6 m, is

K = 14.6'-37 = 39.4 (138)

which permits Eq. (137) to be written as

MKm, = 39.4 M S-1 37 g9m-3. (139)

If this equation is introduced into Eq. (133), with M od replacing M.

46.8 rM 3 .2 0 s rMVtDni (39.4 M S-1.37)0.73 rA M0 73 rA

which is the defining equation for the maximum discernment visibility.

This equation may be tested for authenticity. Thus, at the clear-air tie point, s = 14.6 m and

M = 7.43 x 10-1, and the equation reduces to V.M = 48.270 rM/rA m, which is correct, within

roundoff. For a LWC of M = 0.01 g m-1 (a dense cloud or fog) and an s = 0.3 m (1 ft), the equation

predicts a maximum discernment visibility of 8.6 mn (28 ft). Although this does not constitute
proof of equation validity, per se, it certainly emphasizes that the equation functions in a "proper

fashion." (It is difficult to establish irrefutable proof of validity when dealing with a clear-air

equation under cloudy circumstances.)

The development of the other visibility equations for discernment and recognition proceeds

rapidly following the development of Eq. (140).

By introducing the contrast and extinction-ratio terms into Eq. (140),

3.20 s In (L/E) rMVin.m (141)
k,, MM.73 rA

which is the general equation for discernment visibility (as opposed to maximum discernment

visibility). This is the third equation to be illustrated.
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By recalling that the maximum recognition visibility is 2.8 times smaller than the maximum
discernment visibility, [see the footnote on page 57 following Eq. (135)1. Eq. (140) converts to

1.15 sru
V, = m . (142)"MO 7 3 

rA

By introducing the contrast, extinction-ratio and feature-ratio terms into this equation

1.15 fs In (l/E) rM mn (143)
k MO. 73 rA

which is the general equation for recognition visibility. This is the fourth and last of the equations

to be illustrated.
Because of the complexity of the final visibility results, the remainder of this section is orga-

nized in a very definite fashion that must be explained.
First, it is necessary to present nomograms that illustrate the properties of the four final

visibility equations, [Eqs. (129), (130), (141), and (143)]. These properties and their interrelation-

ships among the different equations simply cannot be described in words. For instance, consider
that Eq. (143) is an equation of six unknowns (neglecting truncation), or, equivalently, it has "six

degrees of freedom" or represents a domain of six dimensions. Any attempted description of such

equation relative to the others mandates the use of nomograms plus words.
The table and figures summarizing the nature of the final equations are presented in a delib-

erate, sequential order and they are placed in this order in the last pages of the section, following

the text and before the beginning of the next section concerning radar/lidar meteorology. A
summary table, Table 6, is presented first. This outlines the types of visibility equations that have
been developed, indicates the pertinent equation numbers and refers to the nomograms (by figure

number) where the equation properties are illustrated. Moreover, the table reveals how the equa-
tions become simplified with the assumption of average, typical conditions of visibility and how

they become further simplified, to their elementary states, with the specification of a fog or cloud

of a given LWC.
Following the summary table, the descriptive diagrams/nomograms are presented in an order

that proceeds generally from viewing conditions of largest range (discernment in clear air) to

viewing conditions of smallest range (recognition in cloudy air). Two versions of each diagram/
nomogram are offered, one scaled in meters and kilometers, for research purposes and users of

the metric system of units, and another, scaled in inches, feet, and miles, for Americans schooled

in the British system of units.

The diagram(s) of Figures 11 (or 12) illustrate the viewing situation of discernment in clear air.
from Eq. (130). The only thing that acts to modify this situation (other than the size of the object)

is the contrast between the object viewed and its immediate surroundings. The nomogram(s) of
Figures 13 (or 14) reveal the situation of object recognition in clear air. from Eq. (129) using an
average f = 0.36, corresponding to Eq. (131). Here, in addition to object size and contrast, the
average feature details of objects viewed have been incorporated in the nomograms.
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The nomograms of Figures 15-18 illustrate situations of viewing in cloudy air*. With clouds

present, the extinction ratio of the water droplets becomes a factor of visibility reduction that is
nonexistent in clear air. Moreover, the number concentration and size distribution of the droplets

become important. These factors have been parameterized herein through use of the Khrgian-
Mazin distribution function and have been incorporated into the constant and the LWC term of
Eqs. (141) and (143). Additionally, just as in clear-air viewing, object size and contrast are the

major factors of discernment under cloudy circumstances and recognition visibility is reduced,
relative to discernment visibility, by the value of the feature ratio that one chooses to define as

recognition. The ratio is assumed to be 0.36 in the nomograms of Figures 15-18.
The diagrams of Figures I I and 12, for clear-air discernment, and those of Figures 13 and

14, for clear-air recognition, require no instruction.

The nomograms for cloudy visibility (of discernment and recognition), of Figures 15-18,

contain extra "parts" that incorporate the extinction-ratio term, k,, at the lower right, and the s
versus M relation of Eq. (140) at the left. All "diagram parts" of these nomograms are entered
orthogonally with the specific quantities that are important to visibility. At the crossing point(s) of
the orthogonal lines, tracing proceeds along the sloping tracing lines into the next "diagram part,"
or into the "main visibility diagram" located at the upper right. (The procedure is akin to the
more-or-less-standard technique of a computer programmer, who "breaks a problem" into sub-

routines that "feed" a main program.) It might also be noted that, in general, the diagram part on

the lower right hand side of the nomogram serves to define the circumstances of viewing (that is,

the contrast and extinction ratio) whereas the diagram part at left defines the LWC state of the
clouds and documents the relations between object size and discernment or recognition visibility.

A few words about the design limits of the nomograms are also in order.

The clear-air diagrams/nomograms of Figures 11-12 and 13-14 have been extended, in

design and plotting, to very-large visibility ranges, of some 36,000-100,000 km (22,000-62,000
mi), for discernment, which encompasses the space-vehicle and satellite viewing of earth objects
(or the objects of other sun-planet systems) from distances as large as the eal-th-synchronous

altitude of 22,000 mi (35,000 km). The viewing, from such ranges, is presumed to be that of a
typical human being, with 20/20 eyesight, without employment of telescopic or other vision-

enhancement aids. At the opposite extreme of small object size and small visual range, the clear-
air diagrams/nomograms of the figures cited are limited to object sizes of about 0.001-0.01 m

(0.04-0.4 in.), with corresponding visual ranges of about 1-4 m (3-13 ft).
The "cloud-state" nomograms of Figures 15-16 and 17-18 are limited, in their extremes, to a

maximum discernment visibility of 30 miles (Figures 15-16). which is the definition of the clear-
air state, and to a 10.7 mile maximum recognition visibility (Figures 17-18), which is 2.8 times

smeller than the maximum discernment visibility. For ranges larger than these, we are involved
in clear-air visibility, not cloudy visibility, and Figures 11-14 should be used for prediction rather

than Figures 15-18. At the opposite, small-visibility extreme of Figures 15-18, the nomograms
have design limits of M = 5 g m-3 , k, = 4.0, with VD = 0.54 s and V = 0.068 s. The design limit on

M will be exceeded in the viewing of very small objects (as in the insect example below). But Eqs.
(141) and (143) are still valid and may be utilized in such cases, since M merely becomes a modi-

* Description of the actual construction details of these nomograms is beyond the scope of this report. Suffice it to say

that the nomograms solve Eqs. (129). (130). (14 1). and (143). in parts. with important resort to equations (139) and (140).
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fled, artificially-large, "effective M" and is not a real LWC value. The effects of earth curvature on

visibility are ignored.

Now that the nature and limitations of the equations and nomograms have been briefly

described, we may turn to a discussion of the significance of the equations concerning visibility in

the atmosphere.

Perhaps the best way to demonstrate the descriptive power of the equation set IEqs. (129).

(130), (141), and (143)1, relative to experience, is to present several examples of viewing situations

that are predicted by the equations. This will also enable the reader to "check" the author's

equation and nomographic evaluations. Six specific examples will be presented.

The first visibility situation to be considered is that of a fog/cloud of maximum visual

obscuration. As noted previously, the maximum LWCs reported in the literature, that define such

fog, are about 2 g m-3. Thus, Eqs. (14 1) and (143), which specify the discernment and recognition

of objects, become, for average, typical conditions of viewing [that is, contrast = 0.8, k,, = 1.5 and

f = 0.36. as assumed previously], VD = 1.0 s and V = 0.13 s. If it is presumed that an intrepid

motorist is looking for a large, overhead, directional-sign while "feeling" his/her way through this

fog [sign size s =_ 5 m (= 16 ft)]. the sign should be vaguely discernable at a distance of 5 m (16 ft)
and would only be recognizable at a distance of 0.7 m (2.3 ft). This says that the venturesome

motorist, with the car directly beneath the sign, could "stand on the hood" and still not be able to

recognize the lettering or information content of the sign.* The author has personally encountered

fogs of such obscurement in Washington state, California, and the Ontario and Eastern Provinces

of Canada. The reader has undoubtedly had similar experiences. The situations are real, not

theoretical. Incidentally, on a clear day, with no obstructions ahead, the same large sign should

be discernable, as a small "dot," at a range of 13 km (8 mi) and recognizable as a sign, with

concentrated attention on the largest lettering, at a range of some 5 km (3 mi).

The second visibility situation for consideration is that of the outdoor discernment and

recognition of an insect that draws our attention by its motion. Assume that the insect is crawling

along a sidewalk and that average contrast conditions prevail, more or less. In clear air, Eq. (130)

predicts that the insect (size = s a 0.005 m =_ 0.0 16 ft a 0.2 in) can be discerned at a distance of

13 m (43 ft) and can be recognized (as being an ant, bee, fly, beetle, etc.) at a distance of 4.6 m

(15 ft), from Eq. (129). This is viewing that also requires the deliberate attention of the observer.
Now presume that the day is foggy, rather than clear. On such day, with a fog defined by a liquid

water content of M = 0.001 g M-3 (a moderately dense fog), the observers discernment distance of

the insect would be 1.3 m (4.3 ft), from Eq. (141), and his/her recognition distance would be =_

0.47 m (a-1.55 ft E 18 in), from Eq. (143). (It should be noted that this situation lies beyond the

"small-size limits" of the Figure 15-18 cloud nomograms.)

Third, consider the viewing situation of a motorist, who "looks ahead" on a highway for

approaching traffic. She/he is able to discern a typical car (frontal, approaching size

= s =a 1.5 m =a 5 ft) in clear air at a range of 4 km (2.5 mi), from Eq. (130), presuming the contrast
= In (1/E) = 0.8. The motorist is able to recognize the car (the model, type and perhaps the manu-

facturer) at a range of 1.4 km (7/8 mi), from Eq. (129), presuming a feature ratio of 0.36. In
comparison, under the moderate fog condition specified for the insect example above, the motor-

* This is an extreme case that can only be handled by Eqs. (141) and (143); it lies beyond the limits of the nomograms of
Figures 15-18.
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ist would only be able to discern the same approaching car at a range of 0.4 km (1 /4 mi). from
Eq. (141), and recognize it at a range of 51 m (167 ft), from Eq. (143). Moreover, if the motorist
had been driving in the direction of the sun (but not directly toward it), as in early morning or late
afternoon, his/her discernment and recognition distances might have been reduced by as much
as a factor of 2. to 650 ft and 85 ft respectively.

Fourth, consider the situation of the ground viewing of a "hot air balloon." as it drifts with the
wind toward an observer under average contrast conditions. The balloon (size s = 10 m = 30 ft)
should be discernable, under clear-air conditions, as a "speck" in the sky, at a range of 26 km (16
mi). from Eq. (130), and should be recognizable, as perhaps belonging to a friend (by coloring,
lettering, etc). at a range of 9.4 km (6 mi). from Eq. (129). On the other hand, under the moderate
fog circumstances specified for the insect and motorist examples preceding, the discernment
range of the balloon should be 2.6 km (1.6 mi). from Eq. (14 1). and the recognition distance

should be 930 m (3050 ft). from Eq. (143).
The fifth example is lengthy and is designed to illustrate how the equations can be worked

backward and forward to progressively obtain an answer. The situation involves air traffic safety
and collision avoidance between two aircraft of different types flying "straight and level." One
aircraft is a slow, light, single Is = 6 m. true airspeed (TAS) = 50 m s-11 and the other is a fast,
military jet (s = 10 m. TAS = 150 m s I ). The light aircraft has a non-painted, aluminum fuselage
and wings; the military jet has a fuselage and wings of conventional construction (aluminum,
titanium, stainless steel, etc.). The day, at the flight altitudes of 10,500 feet and 10,000 feet,
respectively, is quite hazy "with a light overcast" above. However, the ground-observer-reported
visibility is the 1 mile required for visual-flight-rules (VFR), "heads up," "see and be seen" opera-
tions. The contrast between the aircraft and the haze-sky background is very small, say about
0.1. Their feature ratios are both about 0.36. The light aircraft, with a faulty altimeter, has drifted
down to the flight altitude of the jet and the two aircraft on reciprocal headings are on collision
course, with a closure rate of 200 m s-1. Can the pilots, both alert and looking forward, avoid
collision? If the observers report of the visibility was weighted for the recognition of a size distri-
bution of objects of average contrast (0.8), then, from Eq. (143), for a recognition visibility of 1
mile (1609 in), with k, = 1.5, the hazy situation would correspond to an M value of approximately
0.0010 g M-3. This same M value and conditions implies a discernment range of 2.8 miles (consis-
tent with the 2.8 ratio between the two visibilities). An observer weighted toward the discernment
of objects would have reported such a visibility. From this preliminary work with the equations,
they may now be solved again for the flight conditions of the two aircraft pilots. The pilot of the
light aircraft can first discern the presence of the larger jet (from the stated s and contrast values
for the aircraft plus the k,, = 1.5 and derived M values) at a distance of about 1300 feet (400 m, 2
seconds to impact), from Eq. 141, and can recognize it, with its f value = 0.36, at a distance of
about 500 feet (150 m, 0.75 seconds to impact). The light plane, even if the pilot is extremely
alert, cannot respond effectively to controls in a 0.75- to 2-second period. Disaster is certain. The
pilot of the jet aircraft, moving faster and dealing with a smaller approaching object (the condi-
tions have been stated) will discern the light aircraft 700 feet away (215 m, 1. 1 seconds to impact)
and recognize it at 250 feet (75 m. 0.4 seconds to impact) just before collision. This illustrates
how a fatal encounter might occur under perfectly legal VFR conditions. The cause of the colli-
sion, of course, is that the light gray aircraft have so little contrast against the closely similar light
gray background of the haze and sky.
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Finally, let us return to the example of the deer hunter, which was employed to illustrate the

difference between the generalized (historic) situation of discernment viewing and of recognition

viewing. Let us consider how the "object specific" equations developed in this section quantify the
prior generalities. The viewing circumstances of the deer hunter were that he/she was stalking a
deer on a "dense-foggy" day, of LWC = 0.01 g m 1. under rather poor contrast conditions. In (1 /)
= 0.2. with a fog droplet extinction ratio assumed to be k, = 1.5. She/he was able to discern a
living, moving object, perhaps a deer, at a range of 800 feet, but was only able to recognize that it
was indeed a deer-and a legal buck as opposed to a doe-at a range of 200 feet. This was the

prediction of the prior, generalized equations. The "object specific" equations of the present

section permit a more-accurate prediction that may be stated in comparison. The deer (size = s -
1.5 m _= 5 ft) should be discernable, from Eq. (141). or from the nomogram of Figure 15, as a

moving, living object, at a range of 75 m _= 250 feet. The "feature" of the deer-antlers-that

distinguishes a buck from a doe (s. = 1.5 ft. with a feature ratio of f =_ 0.30) tells us that the deer
hunter cannot realize his/her "killing quest" without creeping forward to a recognition range of 27

m =_ 88 ft. as prescribed by Eq. (143) (the Figure 17 nomogram does not apply to an f value other
than 0.36). This final example demonstrates how our previous, generalized visibility equations
grossly overpredict our common, everyday experiences of viewing.

The six examples preceding are all predicted by the final visibility equations herein. The
reader may judge whether the results make reasonable sense, or whether adjustments seem

desirable to reflect better some "commonality of subjectivity," rather than just the author's own.

All criticisms of any aspect of the present endeavor are most welcome. For it is only by working
together, as a group, that we can hope to arrive at a quantitative assessment of subjectivity.

Statements in the visibility literature have suggested that such a goal is impossible. The author

does not share this pessimistic viewpoint.
Several additional comments are pertinent before moving on to the subject of radar/lidar

meteorology.
The only way that cloudy visibility can be defined in general terms is by specifying the LWC of

the cloud or fog. Actual viewing is always object specific and is confined to the discernment and
recognition of objects such as cars, trucks, signs. buildings, hills, mountains. etc.. which we view

at different ranges under different contrast and other conditions. We mentally integrate and
"average out" all of these multifarious views of objects and subjectively judge (official weather

observers are included) that the general visibility is. "6 miles." But what does this "6 miles" really

mean? What is it that the layman or aircraft pilot is supposed to discern or recognize at an offi-

cially reported visibility of "6 miles?" This is a presently unanswered question that the work
herein may help resolve. For example. Equations (14 1) and (143) indicate that a report of 6 miles
visibility under typical viewing conditions implies that the observer is mentally involved with the

discernment of objects of about 5-17 m (16-54 ft) size and/or the recognition of objects of about
16-55 m (52-180 ft) size, whether she/he "knows it or not."

The average. "representative" visibility for a given site, is obtained, in today's practice. by
viewing numerous objects surrounding a site and obtaining an impressionistic average for all
objects. which is reported as the site or station visibility. From the findings herein, this reporting

practice can be considerably improved by the thoughtful design of standardized "markers" that

could be emplaced at known (surveyed) range(s) surrounding a site. [Natural objects simply

cannot be used as reliable visibility references. For example, a "sky background" cannot be used
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as a reliable contrast reference, since such background will depend on the "skycover" situation in

the vicinity of the object being viewed. The background will vary from blue (no skycover) to dark

gray (when the skycover is -thickly overcast"). This is one possible reason that Middleton (loc. cit.)

obtained such large variation of E values in his experiments with markers contrasted against the

horizon, (See Section 9.2.)] It is suggested that a suitable marker, of careful design, might be

manufactured that would insure constancy of background. contrast. and recognizability of

features for visibility observations/measurements made either during the daytime or at night (if

illuminated).

An uncertainty analysis was presented in Section 9.3 that concerned the matter of how

accurately cloud LWC values might be estimated from visibility measurements. At the end of the

section, it was suggested that "someting seemed to be missing" in the analysis and that "that

something" might have been a failure to consider the subject of visibility in clear air and its

relation to visibility in cloudy air. This led to t'- work of the present section.

With reference to this uncertainty analysis. it is now known that there are three additional

factors of uncertainty involved in LWC assessment from visibility than were considered previ-

ously. The first is the range to an object. How accurately is this known? Is it estimated or mea-

sured? The second is the size of the object; is it estimated or known? The third is the feature ratio

of the object that allows recognition. How. and how well, can this be defined and what level of

feature detail do we choose to regard as recognition?

The conclusions of Section 9.3 (summarized in Table 5) remain relatively unchanged by the

addition of these three factors to the visibility equations, since all are under our measurement/

definition control. The range to objects viewed can be established to an accuracy such that uncer-

tainty effects on visibility become negligible. The size of objects, although somewhat difficult to

define in profile projection, can also be established with considerable accuracy. The definition of
"recognition" lies completely under our control, hence is essentially devoid of uncertainty. There-

fore, the conclusion that visibility nbservations or measurements provide excellent, accurate

means of LWC determination stand-, unchanged.

This terminates the discussion of visibility. We turn now to the equally important subject of

how the equations of the Khrgian-Mazin distribution function can contribute to the field of radar/

lidar meteorology and how the results compare with previous studies. The section begins on page

74).
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10. RADAR/LIDAR REFLECTIVITIES AND DATA COMPARISONS

The Khrgian-Mazin distribution function permits the establishment of relations among quan-
tities that are important to radar/lidar meteorology. In this section, the M versus Z relation (of
conventional expression) is developed for radar/lidar. The radar relation is next developed demon-
strating how 77 (volume reflectivity) is dependent on Z (reflectivity factor). The equation is then
used in comparison, for natural cloud types. with the measurements and equation work of prior
investigations. The lidar equation relating -q and Z is presented and discussed, relative to the
same cloud types. Finally, the detection requirements of radars of different wavelength, and lidar.
for natural clouds, are summarized in a table of "dB-q requirement." which is the common form of

r- expression in the radar/lidar fields.

10. 1 The M Versus Z Relation for Radar and Lidar Stemming from the KM Distribution
Function

The radar/lidar reflectivity factor, Z. is a function of the size spectra of the cloud droplets only.
Herein, the spectra are t4escribed by the basic KM distribution function.

The reflectivity factor may also be deduced indirectly from radar or lidar measurements. Since
radars operate in the Rayleigh region of the Mie theory. the radar measurements are dependent

on the wavelength of the transmitted radiation. Since most cloud lidars operate in the region of
geometric optics of the Mie theory, the lidar measurements are not dependent on the wavelength

of transmission.

The M versus Z relation for both radar and lidar is readily obtained from Eq. (73). by reversing
the equation with the result

M =4.02 Zg5 5 2 
(r9 M-3 g (144)

For persons well-versed in cloud and precipitation physics involving radar, it might be noted
that the M versus Z relation found to be most descriptive for rain, from the AFGL. SAMS/ABRES

Program. is

M = 0.00314 Z' 576  g m-3 . (145)

This is the Joss, Thames and Waldvogel6-1 (1968) equation for widespread rain, as also refer-

enced and discussed by Plank 64 (1974b).

It is seen, neglecting truncation, that the exponents of the equations for water clouds and
rain are quite similar. The coefficient for water clouds, however, is about 1300 times larger than
that for rain, which reflects the fact that the Z values for water clouds are small, relative to rain
(see Figure A4) but that the M values are, or can be (as shown in Figure A3) of comparable value.

This emphasizes the descriptivity of Eq. (144).

1 Joss, J.. Thames, J.C., and Waldvogel. A. (1968) The variation of raindrop size distributions at Locarno. Proc. Internatl.
Conf. on Cloud Physics, Toronto, Amer. Meteor. Soc., Boston, 369.

S Plank. V.G. (1974) Hydrometeor Parameters Determined.from the Radar Data of the SAMS Rain Erosion Program.
AFCRL/SAMS Report No. 2, AFCRL-TR-74-0249. AD 786454. ERP No. 477, 86 pp.
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10.2 The 7) versus Z Relations for Radars of Different Wavelength

The volume reflectivity. iq. is the fundamental quantity measured by any "-cloud physics

radar." It is defined as the summation of the hack-scatter return to the receiver, per unit illumi-

nated volume of the radai. It is conventionally expressed in units of cm

Mason (197 1) has presented the equation for water hydrometeors."'

0.93 t'• Z
T1 = (146)

where X is the wavelength of the radar. With units conversion, Plank (1974a), this beconmes"

2.85 x lO'°Z28 x cm 
( (147)

xl

with X still in cm.

10.3 - Values for Internationally-Defined Clouds for Radars of Different Wavelength, Plus
Data Comparisons at X-Band

The average, typical liquid-water-contents for internationally-defined water clouds were

determined in Section 9.2, Table 3, following the procedures explained therein. These averages

are listed in Table 7. in the first data column of the table. The next two columnns of thie table show

the Z values (from Eq. 73) and the Tj values (from Eq. (147)) for a radar wavelength of 1.25 cm.

Comparison measurements exist that were obtained by Plank. Atlas and Paulsen (1955) using

a modified APS-34, X-Band radar with X = 1.25 cm (or 24 Ghz frequency). The ranges of the

measured -1 values for the internationally-defined clouds identified in Table 7 are presented in

column 4 of the table. The corresponding value-ranges of Z. derived from Eq. (142) reversed, are

sopplied in the following column.

Atlas and Bartnoff (loc. cit.) have provided an equation for radar Z that may also be used in

comparison. Without discussion of details, their equation is

Z = 1.91 X 10' G(n) D)" M mm"' m: . (148)

where Do is the median volume diameter of the cloud droplets. in pm. and G(n) is a non-dimen-

sional quantity that is a function of the "spread" of the size distribution of the droplets. The Atlas-

Bartnoff (AB) values of Do are listed in the first column of the "AB portion" of Table 7. These are

the same values shown in Table 3 and explained in Section 9.2. The AB values of G(n) for the

various identified types of internationally-defined water clouds are provided in the next column of

the table and their Z values, and corresponding -q values (from Eq. (142). forX = 1.25 cm) are

presented in the last columns of the table.

65 Mason. B.J. (1971) 'nit, Physics ]Clo iuds., second edition. Clarendon I Iress. Oxford. En, lhind.

N, Plank, V.G. (1974) A Summan! of fit, Radar Equations atid Ma('stir('ent Techriiques Used in flt' SAMS Rain Erosion
Prgram al Wallops Island, Virqinia. AFCRL/SAMS Report No. I. AFCRI.TR-74-0053. Special Report No. 172. 108 l)1P-. Al)
778 095.
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It is observed, from Table 7. that both the equations herein (1) and the AB equations predict

Z and -q values which, except for AB regarding Ns, tend Lo lie somewhat below or at the smlall

value end of the PAP range of measured values. With regard to Ns, the H predictions lie within the

measured range but those of AB do not. There is an obvious problem with the AB predictions

which may have resulted from some kind of typographical error in their paper. Radar calibration

unknowns also probably existed in the PAP measurements, which might explain why their value

ranges seem -overly large."

In general, the H predictions and t'.ose of AB are in approximate "dBZ accord" (dBZ being the

conventional radar-meteorological way of expressing Z). The H predicted values of Z. neglecting Ns

clouds, are, on the average, about 4.8 times larger than those of AB. The dBZ values are about

5.3 times larger.

The first section of Table 8 shows the values of dB-q that are required (according to the work

herein) by radars of different wavelengths to detect the internationally-defined, water-cloud-types

identified in the table. This reveals the general criteria for cloud detection by any radar operating

in the wavelength (or frequency) bands defined as K-Band. X-Band. C-Band. S-Band and L-Band.

The dB-q values provided in the table are "as far as one can go.- in specifying detection criteria,

without full and complete knowledge of the characteristics of the particular radar system. (Such

knowledge involves information about pulse width, pulse repetition frequency. transmitted power.

minimum-detectable received power. chirping or frequency-sweeping techniques employed, pulse

averaging or signal integration procedures used, -long term'* time averaging possibilities, and

whether the radar is of usual or phased-array type. etc.)

Casually. one would assume that radars of relatively large wavelength, C-Band or larger.

would be useless in cloud detection. Howcver, this neglects the fact that numerous operational

radars today are extremely powerful and sophisticated. For example. Hardy and Katz"'7 (1969),

Atlas, et al6l"'` (1966a. 1966b) and Atlas 7
0 (1990) using S band radars at the NASA. Wallops Island

Facility were able to detect clouds with the radars. Gossard, Strauch and Rogers 71 (1990) were

able to use an L-Band, vertically-pointing doppler radar to deduce the size distributions of cloud

and precipitation. Blood (in Hardy. et al. 7
1 1981) demonstrated theoretically that it was possible to

detect very thin cirrus clouds at L-Band, using the Tradex-L radar (with chirp waveform) at the

Kwajalein Missle Range. The technique required -long term'" averaging (to integrate signal from

noise) to deduce the nature of the cirrus. The coherent processing periods (during which the

", Hardy. K.R.. and Katz. 1. (1969) Probing the clear atmosphere with high power. high resolution radars. Proc. IEEE.
57:468-480.

- Atlas. D.. Hardy. K.R.. Glover. K.M.. Katz. I.. and Konrad, T.G. (1966) TropopausC dete.'ted by radar. Science.
153:11 10- 1112.

•' Atlas. D.. Hardy. K.R.. and Konrad. T.G. (1966) Radar detection of the tropopause and (lear air turbulence. Preprints,
12th Radar Meteorology Conf.. Norman. OK, Amer. Meteor. Soc.. 279-284.

71, Atlas. D. (1990) Radar in meteorology: Battan memorial and 40th anniversary radar meteorolony conference. Amer.
Meteor. Soc.. Boston.

Gossard. E.E.. Strauch. R.G., and Rogers, R.R. (1990) Morphology of dropsize evolution in liquid precipitation observed
by ground-based doppler radar. Conf. on Cloud Physics. Amer. Meteor. Soc.. 419-426.

"7 Hardy, K.R.. Blood. D.W.. Bussey, A.J.. Burke. H.K., Crane. R.K.. and Tung. S.L. (1981) Study of Meteoroloicol
Conditions Along Actual or Proposed Reentry Trqjectories. AFGL-TR-8 1-0184. 77 pp.
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radar would remain focused at a particular "spot" at the cirrus altitude) were of the order of a

minute. Unfortunately the Blood proposal was never tested.

The preceding paragraph explains why the author includes all radar bands lexcept W-Band

(0.32 cm), which is dominated by Mie scattering (ref. Appendix B)] in his Table 8 specifications of

the required dB-q values for water cloud detection. (The detection criteria can. and have been.

extended to "ice clouds." but this is beyond the scope of the present report.)

10.4 The T versus Z Relation for Lidars

Lidars employed for cloud detection operate mostly in the visible portion of the electromag-

netic spectrum. They can also operate successfully in the ultraviolet portion. In both cases, the

illuminating frequencies and cloud sizes to be detecteL lie within the region of geometric optics of

the Mie theory. [reference Appendix BI. Clouds can also be detected within the infrared portion of

the spectrum. but with considerably more difficulty, since such illumination of clouds occurs

within the oscillatory Mie region of his general theory.

Only visible and UJV illumination are considered in this section. and it is presumed that the

particular lidar wavelengths have been chosen to avoid absorption lines of atmospheric gases.

The definition of the volume reflectivity for lidar is the same as for radar. It is the summation

of the "back scatter" per unit illuminated pulse-volume. Thus, to a rough first approximation

"_9L =_ (k - 1) A. (149)

where k is the extinction ratio and A is the projected, cross-sectional area of the cloud droplets in

the direction of illuni.nation.* For the KM distribution, A is given by Eq. (66), which, when intro-

duced into Eq. (149). with length units conversion, yields

rA

aIL =- 0.00060 (k, - 1) M0
.
73 -A cm . (150)

rM

If Eq. (139) is introduced into the above equation,

rA
. - 0.00166(k- 1) ZO40 3  cm 1 (151)

(rM rz)0597

It was previously mentioned that, in the author's best judgment. k,, is likely to have a value of

about 1.5. With this value inserted into Eq. (151). and ignoring the truncation terms.

"Tit,--- 8.30 x 101 z° 4
03 cm I. (152)

For the Z values for internationally-defined water clouds listed in Table 8. the dB-q values

required for lidar detection of theclouds at visible and UV wavelengths were computed from Eq.

(152). They are shown in the last column of the table and are presented without comment.

. This is "very approximate.- since it ignores energy diversion 1y "sid .-scaftoring• and also ignores s(5•*to iry tiffractiv-,
reflective and scattering effects. Eq. (149) is indicative only.
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We now turn to a consideration of relations among the KM quantities other than the ones

already discussed in Sections 5-10.

11. OTHER RELATIONS AMONG THE K-M QUANTITIES

In this report, some of the "more interesting" relations among cloud physics quantities that

stem from the Khrgian-Mazin distribution function have been examined. But the surface has

merely been touched concerning other valuable relations.

The matrtix diagram at the left in Figure 19 shows the totality of all possible relations among

the quantities, N. A. V, M. and Z. of cloud physics interest. The matrix, in conformance with

conventional plotting tradition. indicates the presumed independent (measured) -X" quantities (N.

A. V. M. or Z) along its horizontal, abscissa direction and the (also presumed) dependent (esti-

mated) "Y" quantities (N, A, V. M. or Z) along its vertical, ordinate direction. The matrix shows

that there are 20 posible relations. wvhich. by row translation, are specifically identified in the

second matrix of Figure 19, at the right.

It may be stated that none of these twenty relations are devoid of cloud physics interest. Each

has conceivable application, either now or with anticipated development of new instrumental

methods of measurement. However, the author's resources simply do not permit discussion of all.

He can merely indicate the relations that have been discussed herein (to a degree). those that

seem -most interesting" for future study. and those that appear to have little immediate applica-

tion without advancements in instrumentation or demonstrated operational needs.

Before proceeding, it should be noted that the particular relations of the right hand matrix of

Figure 19 have been assigned the numbers 1 through 20, as typed in the upper right hand cor-

ners of the matrix blocks. This is for convenience of reference..

The particular relations of Figure 19 for which equations have been presented or which have

been utilized or discussed herein are indicated by the screening material. These encumpass the

relations 3. 7, 10. 11. 15, 16 and 20, that involve all dependencies on M, the dependency of V on

A, and the M versus Z relation. The most fascinating relation of all involves the distinct possibility

of accurate LWC determination from observations or measurements of visibility.

Of the 14 remaining relations, those of estimating V from Z (for predicting visibilities aloft)

and of estimating N from Z (for weather definition purposes) would seem most worthy of atten-

tion. Also of interest are all relations enabling an estimation of A. namely numbers 5-8, since A is

a fundamental parameter of much extinction, attenuation and scattering work in the visual.

radio/radar, IR and UV regions of the electromagnetic spectrum.

The author cannot conceive of any immediate. worthwhile applications for the other 7 rela-

tions (1, 2. 9, 13, 14. 17, and 18) but perhaps others can. Besides, who knows what the future

might hold?

It should be noted and emphasized (as the most important accomplishment of this report)

that any single. accurate measurement of any of the five quantities, N, A, V, M. or Z, enables

estimates of the four other quantities not measured, plus information about the distribution proper-

ties of all quantities. For example. suppose that we have a single, accurate measurement of radar

Z. From the relations 8, 12, and 16, we then have good estimates of the quantities A. V. and M.

This, in turn, through any of the matrix relations, 1. 2. 3. or 4. provides estimates of N. The size
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distribution properties of N), A,), M,), and Z, are then prescribed by Eqs. (60). (64). (68) and (7 1).

(Visibility, although not excluded, is a more complicated. "special case." regarding its distributed

characteristics.)

What can be accomplished from this example of a single measurement applies equally well

(within measurement uncertainty bounds) to any of the other quantities. Thus. from one, there

results "all."

Of course, the validity of the above statements are based completely on the inherent

descriptivity of the Khrgian-Mazin distribution function, or of the "Gamma Function.-

It might be contended that some other distribution function, the normal, log-normal, Poisson.

etc., might provide superior descriptivity in particular instances. This might very well be true. but

it should be pointed out that, to provide this across-the-full-range-of-cloud-physics interest, any

proposed function must be differentiable and integrable for all of the diameter moments of the

quantities cited above (plus aerosols, desirably). Few functions can provide such capability with-

out impossible or horrendous mathematical complexity.

Hence, although use of the Gamma Function, as herein, might cause some 'descriptive lacks"

in specific cases (even though none has been demonstrated to date) the overall, descriptivity of

the function (including that of Appendix A) has considerable merit. In fact, in the author's opin-

ion, this function (plus logical extensions) seems to be the natural, empirical descriptor of most of

the cloud physics/precipitation events of the atmosphere.

A warning must be given, here, however. The equations of the present report do not apply to.

nor are they necessarily descriptive of cloud physics situations of active development or rapid

dissipation. The equations have no growth or dissipative terms. They could be extended to con-

tain such terms but this is completely beyond the scope of this report. The equations can also be

extended to be the descriptor(s) of ice-crystal clouds and snow, but, this again, lies beyond the

scope of the present report.

12. SUMMARY

Equations for double-truncated distributions and for totals were developed that describe the

spectral and integrated properties of the number concentration, cross-sectional area, visibility.

liquid water content, and radar/lidar reflectivity factor of water clouds in the atmosphere. These

equations are all diameter moments of the "Gamma Function," as related, or "tied,. to the basic,

second-moment, distribution-function of Khrgian-Mazin (KM). The KM function, from extensive

data comparisons, is highly descriptive of the number concentration of cloud droplets versus

droplet diameter.

The truncation terms of the equations were di! -ussed and examples of their utility in assess-

ing the measurement capabilities and limitations of (loud physics instruments were presented

and illustrated.

The method used to solve the equation, which essentially involves the expression of all dis-

tributed and totals quantities in terms of the modal diameter for number concentration and the

total LWC of the cloud droplets. was explained. The basic nature of the KM distribution function.

as being part of the general family of the Gamma Function, was noted and several applications of
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the function to weather definition and to providing a continuity basis for storm models, were

highlighted.

The equations for the summed cross-sectional areas of cloud droplets were converted into

terms of visibility and the two types of visibility-discernment viewing at long ranges and recogni-

tion viewing at shorter ranges- were emphasized as being an intrinsic part of tile common seeing

experiences shared by all planetary creatures with eyes.

The history of visibility theory was recounted, as was the un-ortunate stagnation of the theorN

from about 1931 to present. This stagnation (or "sidetracking") was due. in the author's opinion.

to the failure of early researchers to "connect," -combine" and "build on" the V, wrks of Helnholtz' 2

0 1896), Trabert•l (190 1) and Koschmieder'29 " (1924a. 1924b) Koschmieder's (tontributions are

especially valuable since they explain the important (and often dominating) influence of contrast

on visibility.

Visibility and LWC in water clouds of the atmosphere are sensitively related. One essentially

defines the other. Moreover, as visibilities increase (or LWCs decrease) there is a basic association

and merging of the smallest cloud droplets into the general populations of condensation nuclei.

moist aerosols, dry aerosols, and polar molecules [which are ever-present constituents of the

lower atmosphere that are generated by diverse sources and are secondarily governed. in their

number concentrations and mass contents, by the relative humidity state and structure of the

atmosphere (which, in turn, is dependent on the synoptic weather situation of a given day)].

Such considerations, of a logical merger of the smallest cloud droplets (of visibility) with the

aerosols (of haze, dust, or smog situations), led to an equation assumption of "merger." which

recognized that, fbr a common bandwidth, the number concentration of particles will decrease

with decreasing size (see Figure 6 for N total) and that the LWCs (or mass contents) will be like-

wise reduced. This assumption (or relation between modal diameter and LWC) mandated changes

in all equations of the KM distribution function that had been written theretofore.

The visibility situations of discernment and recognition were described and illustrated bv use

of nomograms. Comparisons were made with previous visibility studies and examples were 'ited

to relate equation results to common, everyday experiences of viewing.

An uncertainty analysis was undertaken to demonstrate the versatility of the KM equations

and to ascertain how well LWC might be determined from measurements of visibility. The answer

was to about ± 50 percent, for LWC values ranging from 10 ý) to 2 g m '. However, more important

than this answer was the suspicion engendered by the work that certain factors significant to

visibility had been neglected, historically, and were still being neglected, presently. in the general

theory of visibility. It was postulated that the missing -actors involved the definition and equation

expression of visibility in clear air. together with their expression for cloudy air, as well as consid-

erations about the nature of the "link" between the two.

2 HIelmholtz. H.L.F. von (1896) Handbuch der !P'I siologislchct Oplik. ilafmbure mid IA-ipziLý.

" Trabert. Wilhelm (19011 Die extinction des lichtcs in ei('ini truben rnedium (Schlweite in wolken). ,•hvtr. Z.. 18:518-
525.

21' Koschmieder. I1. (1924) Theorie (ler ho; izontalen sichtweile. B3'ilreqfe zur phttsik der,''rien LlrmOspJheire. XI1:33 53.

30 Koschmieder, H. (1924b) Theorie der horizontalen sichtweitc i1: kontrast und sichlweite. fieitrage zur plh.sik d(er.jreuin
atmosphare, XJI: 171-]181.
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Equations were developed and presented describing the discernmeni of objects of various

sizes in clear air and the recognition of objects in clear air. Clear air was defined as the synoptic

state of unlimited visibility (Ž> 30 miles). This enabled the previous visibility equations for cloudy

air to also be written in terms of discernment and recognition visibility. Various examples of the

descriptive power of the new, more-generalized equations were offered and discussed. A set of

predictive nomograms was provided.

The implications of the Khrgian-Mazin distribution function in the fields of radar and lidar

meteorology were considered next. The KM equation fbr the radar reflectiity factor (Z) was pre-

sented and its relation to volume reflectivity (-q) was noted. A so-called M vs Z relation for water

clouds was developed as were -q vs Z relations for radar and, very tentatively, for lidar. The KM

predictions of -q and Z for internationally-defined, natural water-clouds were compared with the

Plank. Atlas and Paulsen7" (1955) X-Band measurements of q for such clouds. Comparisons were

also made with the predictive equations of Atlas and Bartnofftf (1953). The nominal detectabilities

of these natural clouds, in terms of dB-q and for radar wavelengths from K-Band to L-Band (also

lidar-tentatively), were explained and tabulated.

The totality of the associative (governing) relations among KM quantities of cloud physics

interest was pointed out and emphasized. Of the twenty total, it was noted that only seven had

been discussed specifically in the present report (due to necessary restrictions of scope). However,

all KM associations among the cloud physics quantities were deemed quantitatively and opera-

tionally useful. if not now, then sometime in the foreseeable future. Some of the most promising

possibilities were cited. The KM function and associations were mentioned as providing a sort of
"continuity equation" for cloud physics, which prescribes conditions that are usually true for any

given point of atmospheric space. but which, with processes of cloud development and dissipation

can depart significantly from such state (unless time-change terms were to be incorporated into

the equations).

Three appendixes are included as part of the report. Appendix A outlines how the separate

empirical findings in the diverse fields of aerosol physics, cloud physics, precipitation physics,

and visibility, can, if consolidated on a common comparison basis, provide valuable insight

concerning the overall nature of precipitation development in the atmosphere. Text and illustra-

tive examples of such possibilities are provided. It was noted that these composite relations and

equations are important (1) to the understanding of value consistencies and differences among

quantities when compared on a common basis, (2) to "weather definition.- which requires

predictive ability of particle sizes, and other quantities. over a broad range of concern and (3) to

storm-model continuity and consistency (for checking existing models and planning new ones).

Appendix B considers the Mie scattering theory and how different wavelengths of illumination

impinging on different size distributions of aerosols and hydrometeors would be effected by the

theory. Appendix C indicates how a monodispersed population of cloud droplets, differing radi-

cally from the KM distribution, would affect visibility and other quantities.

7 Plank. V.G., Atlas. D.. and Paulsen. W.H. (1955) The nature and detectability of clouds and precipitation as deter-
mined by 1.25 centimeter radar. J. Meteor.. 12:358-378

Atlas, D.. and Bartnoff. S. (1953) Cloud visibility, radar reflectivity and drop-size distribution. J. Meteor.. 10: 143-148.
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The entirety of the report was dedicated to discussion and demonstration of how well the
Khrgian-Mazin equations describe the physics of cloud events in various fields of endeavor and to
how easily they can be incorporated with other equations or consolidated to yPeld new insights.

13. CONCLUSIONS

A thesis was advanced at the beginning of the report that the Khrgian-Mazin distribution
function and its associated moments of the general Gamma Function had sweeping implications

across a broad range of cloud physics concern in various fields of endeavor. From the basic and
comparative work herein, it is suggested that this thesis has now been verified.

The most important conclusion is that the KM function provides a quantitative mathematical
connection among the total and distributed properties of five quantities important to cloud phys-

ics: number-concentration, cross-sectional-area, visibility. liquid-water-content, and radar/lidar-
reflectivity-factor. It also permits a quantitative association with the historical size-distribution

equations of precipitation physics and is compatible with certain of the descriptor equations for
the dry and moist aerosols of the atmosphere. Thus, it becomes possible to write consistent,
consolidated equations covering the full size range of aerosols, water clouds and rain. An exten-

sion to ice clouds and snow is also possible with continued work.

The properties of water clouds are indelibly tied to visibility and visibility theory. For this

reason. the report concentrated predominantly on this subject and important results ensued.
Visibility theory was extended to include considerations of droplet-size-distribution, LWC. con-

trast, extinction-ratio, object-size and feature-ratio. It was also extended to definitions and equa-
tions fbr discernment versus recognition viewing and of the association between clear-air and

cloudy visibility.

From the sensitive association of M vs V, which "filters through" all of the KM relations, it is
concluded that observations or measurements of visibility can be employed to determine LWC
values to accuracies unobtainable by any other (present) means. This has broad implications. For

example, in the field of climatology, it would seem that statistical/contingency information and
tables concerning visibility could be converted into corresponding tables of LWC to obtain opera-

tionally useful products: also that the LWC of natural clouds could be accurately assessed
observationally. Moreover, it would appear that highly detailed predictions of size distribution.

garnered from the sensitive M vs V relation, when combined compositely with other KM equations
and with fall-velocity, turbulence, entrainment, and electric-field-gradient information, might
contribute importantly to one of the current problems of prime Air force concern, namely that of
the charge separation in clouds that causes hazardous lightning strokes. The sizes of the super-
cooled droplets in such clouds, especially in view of the distinct possibility that the largest and

most unstable of the drops are likely to freeze first, must certainly have important consequences
in charge separation. These are only a few of the possible applications that are foreseeable from

exploitation of the KM association of M and V.

The equations of the report, since they have truncation terms. can be very useful in determin-
ing the capabilities and limitations of present cloud physics instruments and in developing com-

pensation corrections where appropriate.
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They can also be helpful in designing new instruments.

The development of the M vs Z equations for water clouds and aerosols-the first of their
kind-should serve to reduce the error bounds in radar/lidar studies of clouds. Likewise. the
Information provided about the detectabilities of natural clouds may serve as a general reference
and possibly be of interest to climatologists.

From the work of Appendix A. it is concluded that the composite relations and equations
explained therein will

1. greatly simplify any future GL weather definition work of the SAMS/ABRES type or similar,
2. provide consistency and continuity information useful to the checking and development of

storm models.

The Appendix A findings also suggest that the precipitation process in the atmosphere. from
aerosols to the first initiation of the smallest cloud droplets to ultimate precipitation at the
ground, proceeds as part of a "cascade" process, in which aerosols, with increasing relative
humidity (rh) become cloud droplets, which, with further increases in rh, water-vapor deposition

and coalescence, become rain drops, which, resulting from many growth factors, finally fall to the
ground to complete the process. It is suggested that this "cascade analogy," as explained and
illustrated in the appendix, could enhance our thinking about composite relationships across

disciplinary boundaries.
Overall, the general conclusion to be derived from the total efforts of the present report is that

the Khrgian-Mazin distribution function applied to cloud physics endeavors is highly versatile

and extremely useful.

14. RECOMMENDATIONS

A number of suggestions and recommendations were made at various points of the text.

Some of these will be reiterated and others advanced.
It is recommended, first of all, that consolidation efforts should be extended to insure the

continuity and consistency of theoretical and empirical findings across the class boundaries of
the many diverse fields of endeavor that are important to precipitation development in the atmo-
sphere-from nuclei initiation to rain/snowfall completion. Extensive knowledge is available, but

it is compartmented and requires quantitative consolidation.
With regard to visibility, which is a field in which any enhancement of accuracy will profitably

affect all other fields, the obvious need was noted for a quantitative measure of "contrast"-gray-
scale contrasts and color contrasts and combinations (which are the major factor that dominate
visibility uncertainty). Such contrast information is undoubtedly available in the fields and litera-

ture of photonics, lithography, photography, human-visual-acuity, instrumental-vision-enhance-

ment, camouflage, astronomy, satellite observations, architecture. etc. (For example, it might be
mentioned that the minimum resolvable solid angle of the human eye is about 1/60' giving 3440
as the value of the constant of Eq. (123), which, in turn, from Eq. (124), yields a Koschmieder
threshold-of-contrast value of F =. 0.055. It might additionally be mentioned that the determina-

tion of visibility by instrumental means will necessarily be highly involved in the general field of
photonics with truncation effects considered.) Another factor of importance, dependent on the
precise situation (such as viewing objects looking across a strongly-heated ground surface), is

86



that of atmospheric turbulence. This scintillation effect will tend to cause objects to appear

"fuzzy" and will act to reduce contrast by aberrative reduction of resolution. A literature survey

concerned with atmospheric visibility and conducted along the lines noted here should quickly

enhance accuracy and lead to better visibility equations.

It was also suggested that theoretical efforts with Mie theory and atmospheric diffraction

theory could reduce visibility uncertainty by providing better estimates of the extinction ratio for

cloud droplets (also for aerosols and rain). This is recommended but it should be noted that there

is a threshold level of minimum uncertainty, perhaps irreducible, that is associated with the

secondary effects of multiple diffractions, internal reflections and scattering that may be impos-

sible to quantify.

In radar meteorology. an obvious need exists for continuing the development of radars (prob-

ably in the KU-Band) that can efficiently detect clouds and utilize various of the relations pointed

out herein. Presently, few such radars are operationally available. They could contribute much.

Research persons in the lidar field might profitably utilize certain of the equations developed

herein, expecially that for the reflectivity factor. It is also concluded that the use of IR lidars for

cloud studies will be difficult, since such lidars would operate in the Mie region.

As mentioned in the report. it is suggested that "visibility markers" should be devised and
installed at synoptic and airway reporting sites. These would be markers designed specifically to

provide constant, unchanging reference values of contrast and feature detail at carefully surveyed

ranges (common or different) from the observing site(s). The accuracy of visibility reporting could

be enhanced considerably by the use of such markers and the reports would become more "site

specific" (as is important at airports), since the ranges and spacings of the markers (covering a

3600 sweep of horizon) would establish the "representativeness resolution" of the observations

and reports. This resolution is under our complete control.

Finally, it is recommended that some first approach sould be undertaken to "clean up" visibil-

ity terminology and symbology.
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Appendix A

Composite Distributions

During the SAMS/ABRES Program, after each missile launch or re-entry occurrence, AFGL
provided predicted, tabulated values of the size distribution and number concentration of the

hydrometeors that were likely to be present along the path courses of the vehicles. These efforts

have been reported by , iank6 64 66 (1 974a. b and c), Barnes. Nelson and MetcalfAl (1974).

BerthelA (1976). Plaiak1 (1977), Plank, Berthel and Barnies" (1980) and Plank and Berthel,.

6 Plank. V.G. (1974) Liquid-water-content and HydrometeorSize-distribution Irlormation for the SAMS Missile Flights of the
1971-72 Season at Wallops Island. Virginia. AFCRL/SAMS Report No. 3. AFCRL-TR-74-0296. AD A002370. Special Report
No. 178. 143 pp.

Plank, V.G. (1974) Hydrometeor Parameters Determined from the Radar Data o"the SAMS Rain Erosion Program.
AFCRL/SAMS Report 'o. 2. AFCRL-TR-74 0249. AD 786454. FRP No. 477. 86 pp.

l' Plank. V.G. (1974) A Summary of the Radar Equations and Measurement Techniques Used in the SAMS Rain Erosion
Program at Wallops Island. Virginia. AFCRLI/SAMS Report No. 1. AFCRL-TR-74-0053. Special Report No. 172. 108 pp.. Al)
778 095.

A' Barnes. A.A.. Nelson, L.D.. and Metcalf. J.1. (1974) Weather documentation at Kwajalein Missile Range. 6th Coril. on
Aerospace and Aeronautical Meteorology. Amer. Meteor. Soc.. 66-69. Air Force Surveys in Geophysics. No. 292. AFCRI,
TR-74-0430. AD A000925, 14 pp.

SBerthel. R.O. (1976) A Climatology qf Selected Storms for Wallops Island. Virginia. 1971-1975. SAMS Report No. 4
AFGL-TR-76-O118. ERP No. 563. ADA 029 354.

Plank, V.G. (1977) Hydrometeor Data and Analytical-theoretical Inestigations Pertaining to lte SAMS Missile Flights of
the 1972-73 Season at Wallops Island. Virginia. AFCRL/SAMS Report No. 5. AFGL-TR-77-0149. AD A051 192. ERP No.
603. 239 pp.

"' Plank. V.G.. Berthel. R.O.. and Barnes. A.A. (1980) An improved method for obtaining water content values of ice
hydrometeors from aircraft and radar data. J. Appl. Meteorol.. 19.1293-1299. AFGI.-TR-81-0011. AD) A094328.

" Plank, V.G., and Berthel. R.O. (1982) A descriptive double-truncated exponential model for hydrometeors of precipi-
table size. Extended Abstracts: Conjerence on Cloud Physics. Nov. 15-18. 1982. Chicago. IL. preprint Vol.. 190-194. AFGL-
TR-82-0347. AD A 122036.
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(1982). and also in numerous informal AFGL reports documenting the specific missions, the so-

called "60-day reports".

In these efforts, the end purpose was to provide the BMO (Ballistic Missile Office) with tabula-

tions of estimated hydrometeor number-concentration and LWC over a size range of I to >5000 P m
by altitude layers from the surface to the storm top. In 10 p}m class widths, some 500 total linear
classes would have been required to span the size range-a ridiculous number that would have
provided good resolution for the cloud size-range of particles (in 20 classes) but would have been
grossly excessive in the precipitation size-range (with >480 classes). Using 100 pm class widths.

some 50 total classes would have been needed-still too many for practical tabulation and having

the nasty consequence that the entire cloud size-range would have been documented in only 2

classes. To handle these problems. class widths were specified to increase in geometric progression

from the smallest class to the largest. Ten classes were defined for the cloud size-range that

spanned diameters from 0.8 to 80 pm (80 pm was the maximum detectable size of the JW instru-

ment that provided the basic computational information.). The geometric spacing yielded eleven

additional classes in the precipitation size-range covering diameters from 80 to 12,600 pm (diam-
eters larger than the 5000 p m breakup size of rain were required to handle large snow aggregates).
The tables for the BMO were thus held within reasonable size limits for report incorporation.

Another problem existed in trying to bridge the disciplines of cloud physics and precipitation

physics. Much empirical data, in cloud physics. existed to show that a distribution function, such

as the Khrgian-Mazin function discussed herein, provided a reasonable description for cloud sizes
between about 1 pim and 100-200 p m. Overwhelming data existed, in precipitation physics, to

show that rain (also snow) was well-described by a distribution function of exponential type (a
zero-order Gamma function). The problem was that, when the separate distribution solutions for

clouds and precipitation were "joined together" at a boundary In the drizzle size-range of hydrom-

eteors, a discontinuity of number concentration, LWC and other quantities existed across the

boundary in the tabulations. This discontinuity had serious consequences for the BMO users of

our tables, since BMO was attempting to assess the "nose cone erosion" on re-entry vehicles

moving through the storm hydrometeor environments. Hydrometeors with masses larger than a

certain critical mass would "pass through" the bow-shock-wave to cause erosion. Those with
smaller masses would not. The discontinuity in our tabulations occurred in the same approxi-

mate size (mass) range as that critical for the "onset of erosion-. The problem was caused by a

lack of consolidation between separate fields of endeavor.
It was recognized, at the time, that the separate distribution solutions could have been added

together to eliminate the discontinuity. However, because of other operational pressures, such a

technique was never developed for employment.

The previous comments indicate several of the problems that we encountered in our attempts

to employ cloud-physics and precipitation-physics knowledge in a specific cross-disciplinary appli-

cation. There are many other situations in the general field of aerosol/hydrometeor physics that

require consolidation among the separate fields of aerosol, cloud, and precipitation physics. For

example, in visibility forecasting. it is noticed that the atmosphere always contains aerosols with

cross-sectional areas that, at one extreme, may impose such slight visibility reduction as to be

regarded as negligible (unlimited, 30-100 miles or greater). but, at the other extreme, with large

relative humidity and copious sources ol' pollutants and smoke (especially in topographical "ba-

sins"), the aerosol cross-sections may cause a large decrease of visibility, to a mile or so. Certainly.
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then, aerosols cannot be ignored in visibility forecasting. Clouds also cannot be ignored. almost by

definition, since they are the prime contributors to severe diminishment of visibility as discussed in

Sections 6-9. Precipitation (rain and particularly snow) is likewise important to degraded visibility.

Heavy rain, by itself, can impose visibility hazards to aircraft flight operations and automobile

traffic. Snow can cause even more severe hazards. Visibility forecasting must, therefore, incorporate

knowledge of the number concentrations and cross-sectional areas of aerosols, clouds, and precipi-

tation. somehow consolidating the separate findings of the three fields of endeavor.

Within the confines of this appendix, it is only possible to outline the general nature of the

distributions in the three disciplinary areas and to indicate how the distributions should appear
with consolidation. Distribution functions, all of them Gamma functions, are presented in their

final, applied form. The derivation details of the equations are not presented. Five figures have been

constructed and are furnished at the end of the appendix. Figure Al shows the distributions of

number concentration for several situations th c will be identified. Figure A2 is a companion dia-

gram to Figure A l that illustrates a particular composite distribution. Figure A3 reveals the distri-

butions of projected cross-sectional area, as related to visibility. Figure A4 indicates the distribu-

tions of particle mass or LWC. Figure A5 depicts the distributions of the radar reflectivity factor.

The scale limits of each figure span the minimum to maximum conditions likely to be encountered

in the atmosphere that are important to various aspects of the three disciplines. It might be noted

that the simple plotting of the distributions on common scales is highly revealing by itself. This
must be approximately how the distribution totalities of aerosols/hydrometeors should appear. it we

accept the careful, long-term findings of the numerous research persons in each of the tields.

Al. PERTINENT EQUATIONS

For clouds, the final equations based on the Khrgian-Mazin distribution function have been

developed in the main text herein. The pertinent equations are numbers 41 and 60-74 (sue pages

17. 26 and 27).
For rain, the final developed equations based on the exponential distribution function and the

work of Plank' (1977) are presented below without extensive comment. The equations apply to rain

of the Joss et al'" (1968) widespread type (as normally observed in the AFGL/SAMS program). Also.

since an exponential function has no modal peak (no maximum of ND). except, in a sense, at D) = d).

the number concentration equations were written in terms of the "exponential slope" quantity V.
and the liquid water content. M. The other equations are written in terms of the modal diameters

D'. D' and D'l (plus M), and A is assumed to be determinable from measurements and M to be

directly measurable. The distributions of A,. M,, and Z,, do have maxima, hence their modal diami-

eters are noted, expressed in terms of A. The equations relating the peak values of the distributed

quantities N,,P. A,);, MoP. and Z,),, with the totals N, A. M, and Z are also provided, as is the visibility

quantity V (ref. Eqs. (40). (41). and (42) in Section 6.1). Except for r:, the truncation ratios r,. r.,

and rz. which differ from those for clouds, have been defined by Plank'.

SPlank. V.G. (1977) 1 Uydrome'cor Data (id Araly tical theoretical Investigaftionis Pertaininqg to the SAMS Missile F.iqghts ol
the 1972-73 S&,sort at Wallops Island. Virginia. AFCRL/SAAIS Report No. 5. AFGL-TR-77 0149. AD) A051 192. FPR No.
603. 239 pp.

Joss. J..Thames. J.C.. and Waldvogel. A. (1968) The variation of raindrop size distributitons at Locarno. Proc. Internatl.
Coal' on Cloud Phlisics. Toronto. Amer. Meteor. Soc. Boston, 369.
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Equations for Number Concentration

ND = 7230 M0 0 85 e' I M-0,250 (d !5 D -• D) No. m mm K (Al)

A = 2. 18 M( 25 mm . (A2)

(basic equation stemming from the M vs Z relation of Joss)

N 3320 M264 rN No. m K (A3)

rM

No = 7230 M00185  No. mni mm'. (A4)

(N. is the D = 0 intercept of NI)

Equations for Projected Cross-Sectional Area

AD = 5.68 x 10-3 MO01 D2 e-2.8)M-0.
2

.50 (d< D!< D) m-I mm'1. (A5)

DA = 2/A = 0.917 MO.25 mm. (A6)

I. 10 x 10- 3 M 0
-
7-1 r m-. (A7)A- =

rM

1 = 910 M-0 76 rM m. (A8)
IV =_--

A rA

AD = 6.46 x 10- MO.5 1 m I mm (A9)

Equations for Liquid Water Content

MD = 3.79 MO 185 D3 
e-2"Is8 DM250(d < D < D) g m _3 mm'. (AI0)

DM = 3/A = 1.38 M° 2
5 mm. (Al l)

M is assumed to have been measured

M% = 0.492 M°.0 7  g m 3 mm '. (A12)

Plank, V.G. (1977) Hydrometeor Data and Analytical-theorelical Intt'sttcations Pertaining to the SAMS Missile Fliqhls oq
the 1972-73 Season at Wallops Island. Virgitia. Ab-CRL/SAMS Report No. 5. AFGL-TR-77 0149. AD A051 192. ERI' No.
603. 239 pp.
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Equations for Radar/Lidar Reflectivity Factor

ZD = 7230 MO°0185 D6 e2.DM0 2  (d _D < D,) mm m I mm . (A13)

Dz = 6/A = 2.75 M 2 4) mm. (A14)

22,200 M'77 r, mm6 m -. (A15)Z =
rM

ZDP = 7750 ML52 mm'i m -, mm 1. (A16)

For aerosols, the final developed equations based on the Diermendjian 4 (1964) distribution

function are presented below. The equations express the distributed and totals quantities in

terms of the modal diameter. D'N, of the ND distribution and the mass content, M. which are
presumed to be measurable or deducible quantities. The equations for the modal diameters of the

AD, M,, and ZD distributions are also given. The equations relating the peak values of the distrib-

uted Liuantities N ,P ADD, MDV and Z% with the totals N, A, M, and Z are likewise provided, as is

the visibility quantity V. The truncation ratios for aerosols, which differ from those for clouds and

rain, are not defined herein but they are readily derived, with some time-consuming effort, or can

be obtained from the author.

Equations for Number Concentration

ND 3.18 x 104 M D 6 e-ED/DN (d < D < D.) No. m-3 mm-1 . (AM7}
No N

Dý is a constant that is assumed to be measurable mm. (A 18)

81.8 M rN No. m-3 . (A19)N =

D'N3 rm

NDp = 2.02 x 1020 M No. m-3 mi..`. (A20)

Equations for Projected Cross-Sectional Area

0.0250 M D1 e-6D/DN (d <D 5 D,) m-1 mm-'. (A21)
AD=

DA =1.33 DN mm. (A22)

14 Diermendjlan, D. (1964) Scattering and polarization properties of water clouds and hazes in the visible and infrared.
AppL Opt. 3:187-196
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A I0- M rA m -1. (A23)

D'N r M

1 104 D'N r. m. (A24)

A MrA

Au = 1.31 x 105 M m-' mm-'. (A25)

Equations for Mass Content

16.7 M D9 e-6•D'N (d! 13:5 D.n) gm 3 m 'm-. (A26)MD=
D'N'o

DM = 1.5 DN mm. (A27)

M is assumed to be measurable g m-3  (A28)

M'P = 3170 M g M-3 mm-1. (A29)

Equations for Radar/Lidar Reflectivity Factor

3.18 x 104 M D12 e-,6/ 10  (d < D < D.) mm8 m-3 mm-'. (A30)
D N o

D = 2.00 D'N mm. (A31)

S1170 M DN rz mm6 m-3 . (A32)
rM

Z = 5.0 x 10-7 M mm6 mr-3 mn-'. (A33)

A2. SPECIFIC EQUATION SOLUTIONS AND PLOTS

The equation sets (A17)-(A33). for aerosols. (60)-(74), for water clouds, and (A1)-(A16), for
rain, are discussed below and illustrated in Figures A1-A5.

First, with regard to aerosols, the dry-rural and dry-tropospheric aerosol models reported by
Fenn, et a137 (Figures 18-10 and 18-12), indicate that the peak number concentration of the

aerosols at 0% relative humidity is about NLp = 1.3 x10 5 cm-3 gm-' (= 1.3 x 10'4 M-3 mm-'). The

31 Fenn. R.W., Clough. S.A., Gallery, W.O.. Good. R.W., Kneizys. F.X., Mill. J.D., Rothman. L.S., Shettle. E.P., and Volz,
F.E. (1985) Optical and Infrared Properties of the Atmosphere. Chap. 18 in Handbook of Geophysics and the Space
Environment, Jursa, A.S., Ed.. AFGL. 1-80. ADA 167000.
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modal diameter is about D' = .025 pm (= 2.5 x 10- mm). These two pieces of information are

sufficient to solve the Diermendjian"1 (1964) distribution function for aerosols and additionally

solve all of the dependent equations [Eqs. (A17)-(A33) herein].

When the above values of N,, and D' are substituted into Eq. (A20), solved for N. and ignor-

ing truncation,

N = 3.4 x 101 m-1 (= 3400 cm -1, (A34)

which gives the total number concentration of the aerosols of a "dry model" between the diameter
limits 0 S_ D <_ -.

The mass content of these aerosols may be deduced from Eq. (A 19). There results

M = 6.5 x 10-7 g m-: (A35)

which value carries an assumption that the density of the aerosols is, on the average, for all types

of solid, liquid-chemical, and "fluffy" particles, approximately equal to that of water, that is, pw

1.0 g cm-3 .

The distribution of the number concentration of the aerosols with diameter is specified by

Eq. (A 17). A partial plot of the distribution is presented in Figure AI. under the section labeled

aerosols and identified as "/4". The distribution represents a "minimum condition" for the atmo-

sphere. Values smaller than these would not normally be anticipated.

The total projected cross-sectional area of the aerosols is, from Equation A23,

A = 2.6 x 10-6 m-1, (A36)

and the visibility quantity is

I (A37)
V =-= 3.8 x 105 m = 240 miles.

A

The maximum recognition visibility is

V ln(1/e) (A38)
V-=m ko

[reference Eq. (48)] which, if we assume optimum contrast conditions [1 n(1/E) = 1.0] and an

extinction coefficient of KI( = 2.0, yields

V = 1.9 x 10 5 m _= 120 miles. (A39)

14 Diermendjian. D. (1964) Scattering and polarization properties of water clouds and hazes in the visible and infrared.
Appl. Opt. 3:187-196
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This is a large visibility. But it is quite consistent with the minimum concentration of the
aerosols of the dry model. Such visibilities are common in the western United States, as in Wyo-

ming, for example.

The distribution of the cross-sectional area of the aerosols with diameter is given by

Eq. (A2 1). A partial plot of this equation is shown in Figure A3, in the aerosol section, also labeled
"ZI". (The distribution of visibility, in non-dimensional terms, could also be plotted. This fact is
merely noted, though, since such plots would be superfluous.)

The distribution of aerosol mass content with diameter is described by Eq. (A26). A partial
plot is furnished in Figure A4, identified by "Azl\.

The total radar/lidar reflectivity factor is. from Eq. (A32),

Z = 1.9 x 10-17 mm 6 M-3 (= -169 dBZ). (A40)

A partial plot of the distribution of Z with D, from Eq. (A30). is presented in Figure A5, like-

wise symbolized by "z,".
It is postulated that the mass loadings of aerosols in the atmosphere under "smoggy" condi-

tions (with generation from many industrial/automotive sources) might be several orders of

magnitude greater than those of the dry model. In this regard, two mass loadings larger than
minimum were assumed. The first was M = 5 x 101 g m -3. the second was M = 10-4 g m -3. These

assumed values were not selected arbitrarily. They were chosen to represent aerosol conditions
that might be described as "moderate" and "severe", also to serve discursive and illustrative
purposes vis-a-vis the cloud distributions to be presented.

For each of the mass contents cited above, and with DYN assumed constant = 2.5 x 10- mm,
the equation set (A17)-(A33) was solved in a manner analogous to that outlined above. The results

were:

For M = 5 x 10- g m-4 , with plotting symbol ",
N =2.6 x 1010 m-3  (= 26,000 cm-3),

A =2.0 x 10-5 m-1

V=5x 104  m (=31mi),

V 2.5 x 10 4  m -- 15.5 mi),
Z =9. 1 x 10-'7 mm6 m-3  (=-160 dBZ),

For M = 10-4 g m-3, with plotting symbol "--,

N = 5.2 x 10" m-3  (= 520,000 cm- 3),

A=4.0x 10 m-O

V =2500 m "= 1.6 mi).

V- 1250 m (.80 mi),

Z = 2.9 x 10-6 mm 6 m-3  (= -55 dBZ),

Partial plots of the distribution equations (Al 7), (A2 1). (A26) and (A30) are shown in Figures
AI-A5. Those for the "moderate" M value of 5 x 10`1 g m" are symbolized by "/•"; those for the

"severe" M value of 1 0 1 g m-3 are identified by "5".
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Discussion of these aerosols results and plots will be withheld until the cloud distributions

and rain distributions are also presented.

The distribution and totals equations for clouds were developed herein. The equation set.
based on the distribution function of Khrgian and Mazin, is comprised of Eqs. (60)-(74). The
format of the set is the same as that for aerosols. The cloud set of equations was solved for the

three M values, M = 10-1 g m-3 (light), and M = 0.01 g M-3 (moderate) and M = 1.0 g m-1 (heavy),

with K. of Eq. (A38) assumed to be 1.5. The results are listed below.

For M = 10-4 g m-, with plotting symbol "-i4".
N = 4.43 x 107 m-3  (= 44.3 cm- 3).

A = 7.21 x 10-1 m-1

V = 1.39 x 104 m (= 8.6 miles),

V 9300 m (- 5.7 miles).

Z = 4.62 x 10-9 mm 6 m-3  (= -83 dBZ),

For M = 0.01 g m-3, with plotting symbol "F1".

N =1.06 x 108 M-3  (-106 cm- 3),

A =0.00208 m-r

V =48.1 m (=0.300 mi = 1580 ft),
V 32 m (_0.20 mi _ 1060 ft),

Z = 1.93 x 10- mm 6 m 3  (= -47 dBZ),

For M = 1.0 g m-, with plotting symbol -51",
N = 2.55 x 108 m-3  (= 255 cm-3),

A =0.0600 m-'

V =16.7 m (=54.7 ft),
V=_ 11 m (__36 ft),

Z = 0.0803 mm6 M- 3  (= -II dBZ).

Partial plots of the distribution equations for clouds, Eqs. (60), (64), (68), and (71) are

furnished in Figures A1-A5. They are symbolized as indicated in the headings of the listings

above.
The equation set for rain, based on an exponential distribution function, is composed of Eqs.

(AI}-fA16). The format of the set is analogous to those for aerosols and clouds, with the minor
exception that Eq. (A2) contains the "exponential slope" quantity, A, rather than the modal diam-

eter, Dý, of the like equations of the other sets.

The distribution and totals equations of the rain set were evaluated for the three M values,

M = 0. 1 g m-3 (small), M = 1.0 g M-3 (moderate) and 10 g M- 3 (large), with K, of Eq. (A38) assumed
to be 1.0. Additionally, the rain rates, R, corresponding to the M values, were computed from the

equation of Plank6 (1974b) for rain of the Joss et a163 widespread type, that is,

- Plank, V.G. (1974) A Summary of the Riadar Equations and Measurement Techniques Used in the SAMS Rain Erosion
Program at Wallops Island, Virginia. AFCRL/SAMS Report No. 1, AFCRL-TR-74-0053. Special Report No. 172. 108 pp.. AD
778 095.

SJoss, J., Thames. J.C., and Waldvogel, A. (1968) The variation of raindrop size distributions at Locarno. Proc. Intematl.
Conf. on Cloud Physics, Toronto, Amer. Meteor. Soc., Boston, 369.
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R = 19.9 M' 6  mm hr' (A41)

The rain-rate categories noted are from the Federal Meteorological Handbook (FMHB- IB).
The findings of these computations were,

For M = 0. 1 g M73 , with plotting symbol "W".

N =1810 m 3 (= 1.81 x 10- cm l.

A= 1.88x 10-4  m

V =5530 m (=3.31 mi).
VV m

Z = 377 mm 6 m 3 (= 26 dBZ).

R= 1.5 mm hr- (very light),

For M = 1.0 g m-3, with plotting symbol ",

N =3320 m .1 1= 3.32 x 10-' cm-3 ).

A= 1.LOx 10- m

V =909 m (=0.565 mi = 2980 ft).
V=V m

Z =2.22 x 101 mm 6 m_3  (=43 dBZ),

R =20 mm hr - (heavy),

For M = 10 g M-3 , with plotting symbol "-",

N =6100 m- 3  (=6.10 x l0-cm 3 ),

A= 6.45 x 10-3 m-1

V = 155 m (= 500 ft),

V=V m

Z =1.31 x 106  mm 6 
1-

3  (=61 dBZ).

R = 290 mm hr-' (very intense).

A3. DESCRIPTION OF FIGURES

The approximate diameter limits of the aerosol particles, cloud droplets and rain drops are
indicated in Figure, AI-A5 by the horizontal arrows in the upper portions of the figures. There is
appreciable diameter overlap between aerosols and clouds and between clouds and rain. More-

over, as indicated in Figure Al at the upper left, there are entities, such as polar molecules

[ionized clusters of water vapor molecules (or other clusters)] that exist in large number concen-
tration at sizes smaller than conventionally considered to be aerosols.

The distribution plots specified in the previous section are shown plotted on common scales
in the figures. Except for Figure A2, they extend across the full conceivable range of distribution
values involved in any and all of the three fields of endeavor. This results in "gross overplots- in
certain instances but also provides "thinking references" concerning present or future possibili-

ties and problems.

The distributions plots are symbol-coded as 11, h\, and .1, for aerosols, as E], LI, and E. for
clouds and as ., 4), and 40, for rain. The l's signify conditions that, in each discipline, would be
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regarded as small or "near minimum-, the 2's indicate moderate conditions, and the 3's illustrate

conditions that are large or -near maximum".

Two diameter scales have been drafted on each of the figures for reader convenience. The

bottom scale gives diameter in mm; the upper provides it in p m. Two scales of the distributed

quantities are likewise provided. The left hand scales show distribution per millimeter bandwidth

(for precipitation physicists), those at the right show distribution per micrometer bandwidth (for
cloud and aerosol physicists). Also, in Figures Al and A2, the right hand scale gives No. cm-".

rather than No. M-3 , as at left.
The arrows, pointing right from the "A-\" curves of the aerosol distributions indicate how the

distributions should shift to the right with increases in the relative humidity (rh) of the atmo-

sphere (reference Fenn, et al 3 7 loc. cit., Figures 18-10, 18-11 and 18-12. for example). It is pre-
sumed that one hundred percent rh exists at the tips of the arrows, to a rough first approxima-

tion.
The black dots at the right hand ends of the 4) and (©) curves of the rain distributions indi-

cate the diameter truncation of raindrops that occurs naturally at their breakup size of Dm = 5

mm (-= 5000 pm). [The (TD curve does not attain breakup size (for any N0 > 0.1 m-3 mm-I'H The

matter of "breakup truncation" in rain and the necessity for compensation will be addressed in

the following section.
The distribution of number concentration for each of the fields of endeavor are shown in

Figure Al. The distributions of projected, cross-sectional area (A,) are displayed in Figure A3. The

distributions of mass/LWC (MD) are presented in Figure A4 and the ones for radar/lidar

reflectivity factor (Zd are indicated in Figure A5.
No attempt has been made to "connect" the aerosol, cloud and rain curves of Figures A I. A3,

A4, and A5 as would result from the "adding together" (or consolidation) of the distributions for

_.ach. There are simply too many combinatorial possibilities that would cause the figures to
become hopelessly confused, if such illustration were attempted. (Some of the possibilities will be
indicated presently.) It may be noted, though, that, since the figures cited all have logarithmic

plotting scales, the "connection segments" between plots resulting from addition are "short and
abrupt". An example of a composite distribution resulting from the addition of the &,. -, and 4)
curves (for moderate conditions overall) is provided in Figure A2. To be more specific, the compos-

ite distribution of Figure A2 is comprised of the sum of Eq. (AI7) plus Eq. (60) plus Eq. (Al), as
evaluated for the particular conditions noted in Section A2. It is seen, in comparison with Figure
Al, that the "connection segments" resul'. "',g from addition are indeed "short and abrupt-. They

can be "mentally supplied" for any of the distribution plots, N,, A,, M0 , or Z,, of Figures Al. A3,
A4, and A5 respectively, for any combination of aerosol/cloud/rain interest of the reader's choice.

A4. DISCUSSION

The discussion of this section is organized to indicate some general considerations first. Then
the specific equations for number concentration will be considered to be followed by equal consid-

eration of the equations for projected, cross-sectional area (and visibility), for th, equations of

particulate mass content/liquid-water content (and rain), and. for the equations for the radar/

lidar reflectivity factor (and detectabilities).
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It is assumed, with regard to the distribution plots shown in Figures A l. A3. and A4. that the
curves may be referenced singly or in composite terms. (following the example of Figure A2) with

the reader requested to supply the necessary "mental interconnections". This request arises from
the infinity of possible interconnections of interest across the three disciplines. For example, just
from the nine distribution curves displayed in Figure A3, there are nine possible unimodal distri-

butions. For "added" or "composite" distributions, there are 18 possible, continuous, bi-modal
distributions and 27 possible, continuous, tri-modal distributions. Thus. the total possibilities are

54. The same number of possibilities exist for the distribution curves in each of the figures A 1.
A4, and A5. However, in Figure Al. since the distributions for rain have no modes, we can only
speak of unimodal distributions or, on summation, bi-modal distributions. The reader can now

appreciate the author's request for indulgence. There are 216 possible combinations contained in
the figures cited just for the three atmospheric states classified approximately as small, medium

and large.
It is pertinent to emphasize that the possibilities cited above are quite real and do represent

atmospheric situations of common or occasional occurrence. Aerosols are ever-present. Clouds

(fogs) can exist without the presence of rain. Rain can exist by itself, without clouds, as at the
ground below cloud base or between cloud decks aloft. The bi-modal distributions will result

primarily from aerosols plus clouds or from clouds plus rain. Tri-modality involves all entities.
with different degrees of contribution from each.

Truncation should also be discussed. As noted previously, two types of truncation are of

concern. First, there is the truncation associated with natural atmospheric processes. The prime
example of this is the natural truncation of our descriptor equations that occurs at the upper size

limit for rain, when the rain drops attain their D _--2 5 mm breakup diameter. This upper-diameter

truncation is illustrated by the black dots at the right hand sides of Figures Al -A5. The trunca-
tion is rather innocuous for distributed number concentration, ND, but it progressively becomes

more severe for the larger diameter moments of distribution A.) M1 ,, and ZD. The truncation effects
on ND may be neglected with little 'oss of description accuracy but the effects on A,. M,, and

especially ZD should certainly be considered.
With regard to natural truncation involving the composite equations of this appendix. the

summed distribution equations for aerosols, clouds and rain (if all are present in the given situa-

tion) may simply be integrated from D = 0 to D = D. Taking the lower limit as D = 0 results in
negligible loss of accuracy and greatly simplifies the equations for the truncation ratios, which

then become dependent on only the upper diameter limit D n,

For situations in which aerosols and clouds exist without rain. the composite equations will

be descriptive between D = 0 and a D n that is recommended to be taken at the upper size limit
that conventionally defines "drizzle." that is, D, = 0.2 mm (200 jam). For situations in which
aerosols are of negligible importance, such as for ), (Figure A5). and clouds and rain are the
primary hydrometeors of interest, it is suggested thý t the descriptive and integration limits of D =

d = 10' mm (0.1 Am) and D = D = 0.2 mm (200 jam) are appropriate.

If these suggested size limits of descriptivity and integration are accepted, and if the compos-

ite equations are programmed for computer solution, the programming will be relatively simple.
However, the reader can intuit that valuable computer time will be expended in computing equa-
tion values, in composite addition, that are insignificant relative to other values involved in the
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addition. This excess expenditure of computer time can be minimized by specifying, in the pro-
gram. a threshold level of interest (in the N,. A1,. MD). or ZD, values) below which computation is not

permitted and a zero value is substituted.

The second type of truncation involves instruments-the interpretation of their data based on

their size limitations of measurement. (reference Figures 1-3 and associated commentary). also

concerning the planning and design of new instruments to meet particular objectives. With such

truncation, a minimum size limit D = d and a maximum size limit D = D., will usually exist and

the distributed and totals quantities will be confined between these limits. For composite distri-

butions, such as herein, the problems of integrating between the definite limits d <_ D !5 DM and

securing appropriate truncation ratios, where d and Dm will differ with the given instrument, are

rather complex. But the problems are solvable and it is recommended that they should be solved

as part of the specifications of any instrument offered for research purposes for commercial sale.
We proceed now to discuss Figure AI and its companion. Figure A2. It is seen. from the

composite distribution of Figure A2 (for moderate conditions overall) that the distribution is bi-
modal with modal peaks in the aerosol and cloud sections of the figure and that there is an

inflection zone joining the cloud and rain sections. The modal peak of aerosol contribution is

some 5 orders of magnitude larger than that for clouds and some 11 orders of magnitude larger
than the inflection zone between clouds and rain. These huge differences and the general appear-

ance of the distribution gives one the distinct impression, mentioned earlier, that, at least in
terms of the number concentration of the hydrometeors decreasing as the hydrometeors grow to

precipitation size, the rain development process of the atmosphere (-warm rain" specifically)
occurs in a manner analogous to a series of waterfalls, or "a cascade". The impression is en-
hanced by the observation that, as relative humidity increases, the distribution portion for aero-
sols moves to the right, further into the figure portion for clouds. The distributed number concen-
trations of the cloud droplets with increased LWC (as can be seen from the M., ]. and [] distri-
butions of Figure Al) likewise move to the right, further intc the figure portion for rain. The rain
distributions, too, move right toward increasing drop diameters with increased LWC (Figure Al).
The impression is that a reservoir of moist aerosols (condensation nuclei) exists that begins
"spilling over" with increased relative humidity to form cloud droplets. The cloud droplets, in turn,
grow larger with relative humidity (vapor deposition) and coalescence to form rain drops of pre-
cipitable size. With fall distance through an environment containing cloud droplets and other rain
drops of various sizes, the rainfall population progressively grows to larger sizes with fall distance.
due to collisions and coalescence, until it impinges on the ground to complete the overall process.

The essentials of this process have been known for many years. But the presentation of the
empirical findings of three fields of endeavor illustrated at a common scale is perhaps new.

We turn next to a consideration of the Figure A3 distributions of projected, cross-sectional
area as related to visibility. The figure shows that the modal peaks of Ak are about one order of
magnitude larger than the corresponding ones for clouds and about 4 orders of magnitude larger
than the corresponding ones for rain. However, since there is also an order of magnitude variabil-
ity among the 1, 2, and 3 curves of each of the disciplines, one cannot tVll, a-priori by mere
inspection, Which combinations of the curves cause large or small, or important or inconsequen-
tial, contributions to degraded visibility. In this regard, it is of interest to summarize the contribu-

tions of aerosols (a), clouds (C) and rain (R) to total summed A (no subscript), to maximum,
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theoretical recognition-visibility, V Ireference Sections 6 and 6.1. and Eq. 41)1] and to maximum.
"actual" recognition-visibility, or -Trabert recognition visibility". V [reference Section 6.2 and Eq. (48)1].

The equation for total A in this appendix section is given by

A = A + AC + AR m-'1 (A42)

the equation for V Is given, analogous to Eq. (41), by

S= 1 m . (A43)

and the equation for V is given by

in (1/s)

V= I 0M. (A44)
k..Ag + k~cAc + klAR

from Eq. (48) and Eq. (A42) above. It was previously assumed that the extinction ratios ka, lc.

and k, had the respective values of 2.0. 1.5, and 1.0. It is now assumed additionally, for general

discussion purposes, that the contrast conditions of our supposed viewing are "optimum", such
that In (I e) = 1.0. With these assumptions, Eq. (A44) simplifies to

1V=m. (A44)2A.+ 1.5Ac + AR

and we are dealing only with the individual component values of Aa, A,. and AR. Depending on the
given situation, these values I[1 may all contribute importantly to visibility or 121 one or two may

have zero values (rain may be absent or clouds may be absent or both) or 131 one or two may have

insignificant values relative to the other(s).

Several examples of term contributions to visibility reduction may be provided that are related

to the "1, 2, 3 situations" specified in Section A2 and that reference Eqs. (A42), (A43), and (A45).

The first examples concern situations of relatively large visibility. The following provide examples
of progressively decreasing visibility that can occur in different ways.

The largest visibilities occur, of course, when only dry aerosols are present in the atmosphere.

The Zi situation of Eq (A36) indicates that Aa = 2.6 x 10-6M-' (with Ac = AR = 0) such that V = 240

ml and V = 120 miles (from Eqs. (A42), (A43), and (A45)1. Consider next a 'smog" situation with a
moderate concentration of aerosols. h\, combined with light fog, Wf]. For this combination, Aa =

2.0 x 10- m-', Ac = 7.2 x 10- m-1 and A,, = 0 which yields V = 6.8 mi and V = 4.9 mi. Next, con-

jure a situation of very small visibility (as in a closed metropolitan valley) in which there is dense
smog, A plus [K, combined with moderate rain, (ý). Here, Aa -= 4.0 x 10-4 m 1, Ac = 0.060 m-'. AR =
1. 1 x 10-3 M-1, V = 16 m (52 ft) and V = 1 I m (36 ft). This is a fairly dense smog caused primarily
by the water fog and rain. Finally, postulate the existence of a microburst associated with thun-

derstorm activity. Further postulate that dense clouds and very intense rain exist in the
downdraft of the microburst, E] plus C®, and that aerosols are of no importance to the visibility

state within the microburst. Thus, Aa = 0. A(' = 0.060 M-', AR = 6.5 x 10-3 M-1. V = 15 m (49 ft) and
V 1 10 m (33 ft). This demonstrates a situation of another kind that yields small visibility.
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The above examples should provide the reader with some appreciation of the possible combi-

nations of aerosols, clouds, and rain that dictate his/her viewing conditions under various cir-

cumstances. It should also be emphasized that, in the examples cited. V and V are the maximum

recognition visibilities (of two types). To obtain the corresponding maximum discernment visibili-

ties, the V and V values above should be multiplied by 2.8 (reference page 57). Furthermore.

maximum discernment or recognition visibility only implies that it is possible to discern or recog-

nize objects within the range distances cited. The actual discernment or recognition of an object

depends on the object size and the features of the object (reference Section 9.4).

We now move to a consideration of Figure A4. which presents the distributions of aerosol

mass content and cloud/rain liquid water contents. It is observed from the figure that the modal

peaks of distributed mass content for aerosols are some two orders of magnitude smaller than the

corresponding (same number category) peaks for clouds and about 1.5 orders of magnitude

smaller than the corresponding peaks for rain. This means that the mass contribution of aerosols

to the summed, total mass content of composite distributions is relatively small. (This. of course,

must be true, since the "1, 2, 3 situations" illustrated were originally specified in terms of M.)

The author sees little need for offering specific examples of composite quantities involving

mass contents. The distributions are important, without question, but the applications are highly

specific.

As an aside concerning the LWC of rain, it may be noted that LWC can be successfully deter-

mined at the ground surface by the measurement of the rain-rate, R. The equation is the reverse

of Eq. (A4 1) for Joss et al. widespread rain, which is

M = 0.0756 R 0
864 g m-3  (A46)

with R in units of mm hr-. In the SAMS/ABRES program, we obtained the surface data points of

M in this manner using Joss momentum disdrometers"8 [Joss, Thams and Waldvogel (1968)1.

We finally consider the distributions of the radar/lidar reflectivity factor of Figure A5. The

modal peaks of the distributions for aerosols are seen to be extremely small relative to the corre-

sponding peaks for clouds (some nine orders of magnitude smaller, or 90 dBZ) and relative to the

corresponding peaks for rain (some 15 orders of magnitude smaller, or 150 dBZ). Thus, the radar

returns from aerosols are negligible compared to those for clouds and rain and the lidar returns

are generally negligible except under particular conditions that have not been considered herein.*

The designer of a lidar, however, might be interested in the possibility of detecting aerosols of
normal atmospheric concentration. If so. the distributions of Figure A5 and the total Z values of

pages 100-102 provide some information about the difficulties of the task. It is additionally

observed from- Figure A5 that the modal peaks for clouds are about three orders of magnitude (30

dBZ) smaller than the corresponding ones for rain. This is quite consistent with operational

knowledge of the comparative radar returns from water clouds and rain. (Also see Table 8).

These are the conditions that would prevail near a generation source of aerosols, such as the smoke from an industrial
smokestack. Smoke contains number concentrations of aerosols that are tremendously larger than any discussed herein
and can be readily detected visually or by lidar.

" Atlas. D.. Hardy. K.R.. Giover, K.M., Katz. I.. and Konrad. T.G. (1966) Tropopause detected by radar. Science.
153:1110-1112.
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It is helpful to summarize the different M vs Z relations for aerosols, clouds and rain. For dry

aerosols, assuming no truncation and that D, = 2.5 x 10 5' mm (as previously discussed) the

relation is

M = 5.5 x 1010 Z g m -. (A47)

from Eq. (A32). For moist aerosols with 100 percent relative humidity, assuming that the value of

DN will increase to about 7 x 10-5 mm in accord with Figures Al or A2, the relation should be

something like

M =_ 2.5 x 109 Z g m -3, (A48)

likewise from Eq. (A32). Again, it should be mentioned that these relations for aerosols probably

have no present utility except for design/thinking purposes.

The M vs Z relation for clouds was discussed in Section 10. 1. Here rewritten for no trunca-

tion, it is

M = 4.02 ZO.5 2  g m -3, (A49)

The relation for rain of the Joss widespread type is

M = 0.00314 Z0 5
1
6  g m-3. (A50)

from Plank6 (1974b).

The distribution curves for rain of Figure A5 provide a good reference base for discussing

truncation effects and the truncation ratios. As mentioned, the black dots of the figure, at D = 5

mm. which is the approximate breakup diameter for raindrops, reveal that the ZD values at the

points are relatively large and have not decreased in value in the manner of the other figure plots.

The points "hang in the air", so to speak. This is an immediate indication that the truncation

ratios rM and rz of Eq. (A15) cannot be ignored a priori. It may be stated that these ratios, for the

T. 4), and (®) situations of rain, have the values r, -, 0.99995 and r, = 0.9994, for the T situa-

tion (small). rM = 0.993 and rz = 0.92, for the 4) situation (medium), and rM = 0.87 and rz = 0.40.

for the @ situation (large). nrh"se values were computed from Eqs. (G 10) and (G 15) of Plank"

(1974b).] Thus, the rz/rM ratios that enter Eq. (A15) to modify it froin the non-truncated state

have the respective T, (0), and (®) values of 0.9994, 0.926 and 0.46. Only the last value, for

situation i Is of major importance. The others are trivial. The same may be said about the
truncation ratios involved in M and A. Natural upper boundary truncation will never be a problem

for the number concentration N.
With regard to the truncation of the composite equations for instrument evaluation or design

purposes, the distribution equations for ND, AD. M,,, and Z,) for aerosols, clouds, and rain, can

I Plank, V.G. (1974) A Summary of the Radar Equations and Measurement Techniques Used in the SAMS Rain Erosion
Program at Wallops Island, Virginia. AFCRL/SAMS Report No. I. AFCRL-TR-74-0053. Special Report No. 172. 108 pp., AD
778 095.
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simply be added together and integrated by parts between any diameter limits that might be

appropriate.

AS. CONCLUDING REMARKS

"The results of the investigations of composite distribution equations of this appendix are seen

to make reasonable sense relative to our prior knowledge and experiences with number concen-
trations, visibilities, liquid water contents, and the expected values of signal return from aerosols.

warm clouds, and rain using radar or lidar. Thus, although there is certainly a long way to go to
refine the detailed values of equation coefficients, exponents, and multipliers, it may be con-

cluded that the consolidated equations herein certainly bound (or "ballpark") the values of the

distributed and totals quantities, at the very least, and that they probably provide excellent

description in most instances.

These conclusions lead to the suggestion that the development of an empirical descriptor
model might be of value, certainly for applications such as weather definition.

To establish an empirical, or artificially intelligent, computer model to check on the continuity
and internal hydrometeor consistency of other mesoscale and storm models, the author would

recommend the addition of the distribution equations for aerosols, clouds, and rain and integra-

tion of all equations between the limits 0 _ D 1 5 mm. This lends itself to simple programming but

is costly in computer time. Such time can be conserved, though, by "thresholding" the values of
the distributed quantities to minimum levels of interest below which computation is not permitted

and zero values are substituted. Furthermore, in such a program, if the particular problem does

not involve aerosols, or if clouds and/or rain are not involved, any of the three terms of the

composite distribution function can be set to zero value and computation can be restricted to the
remaining terms or tenn. No truncation ratios need be computed except for heavy rain, as was

demonstrated above for the Z values.

The value of such an empirical "descriptor model", which would reflect the combined observa-
tional experience of a great many investigators over numerous years, is that it would provide a

reference base of how the particulates in the atmosphere, or in clouds or warm storms, exist

naturally under a variety of conditions. Thus, any operational forecast model for clouds or
storms, in its internal predicted states of hydrometeor interactions, should not depart too wildly

from the experience model. The particle number concentrations of the working, predictive model
should not differ vastly from experience. The predicted internal visibilities should not be ridicu-

lous. The liquid water contents should be reasonable and should not fall beyond the bounds of

maximum observed values. The radar/lidar reflectivity factors should agree approximately with
experience and the predictive model should, in any "real time" comparisons with actual radar/

lidar measurements, perform satisfactorily.

The reader will note that this appendix and report are carefully confined to water hydromete-
ors. Only occasional reference was made to ice crystal clouds and snow. There are good reasons
for this. First, regarding ice crystals, we have not yet obtained the necessary measurements of the

size distribution of ice crystals of the various types (or the also necessary measurements of their

equivalent melted diameters, which yields crystal mass) to be able to ascertain even the general
nature of the distributions. Hence, without such knowledge. it is premature to attempt the speci-
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fication of a descriptive distribution function. Second. regarding snow in its various aggregate

forms, present surface measurements and aircraft measurements using PMS equipment indicate

that snow can usually be described by a distribution function of exponential type (as in the case

of rain). However, there is huge difficulty in obtaining the mass distribution of the snowflakes

that corresponds to the size distribution. As attempted now, by so-called "-to D conversion",

where I is a length measure of snowflake size and D is the equivalent melted diameter, there are

uncertainties of intolerable amount, freference Crane" (1978)]. There is a "stonewall" that prohib-

its further progress in "snow physics" until we acquire instruments that provide direct measure-

ments of particle mass. [One such aircraft instrument, an "M Meter-. has been designed and

laboratory tested by an AFGL teamA4 (Plank, 1987).]

The equations of this appendix are analogous to equations of state for aerosols, clouds, and

rain. Particular processes will occur within these hydrometeor regimes. But they cannot be

handled by the present model, since its equations have no developmental or dissipative terms.

A3. Crane, R.K. (1978) Evaluation of Uncertainties in the Estimation of Hydrometeors Mass Concentrations Using Spandar
Data and Aircraft Measurements, Set. Rep. No. 1. AFGL-TR-78-0118, AD A059223, 107 pp.

A4. Plank. V.G. (1987) The M-Meter (particle mass sensor and spectrometer). Second Airborne Science Workshop. Univ. of
Miami. Miami, Florida. Feb. 3-6. 1987. 171-173.
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Appendix B

The Mie Regions of Scattering and Diffraction as Related to th. .ize-Distribution

Spectra of Water Clouds Illuminated by Visible Light and X-Band Radar

One of the important factors in the weather-definition, visibility, radar/lidar, and other
considerations of the main text, is the relation between (1) cloud droplet spectra illuminated and
viewed at different radiative wavelengths and (2) the scattering/diffractive regions identified by
Mie'8 (1908).

A few comments and an illustration are offered in this Appendix. which, hopefully, will shed
some light on these relations. The comments and illustration are indicative only. for the author is
well aware that the Mie theory is highly complex and cannot be summarized briefly. Also, the
cloud-spectra-versus-Mie-theory relations are complicated and will merely be outlined herein. The
emission and absorption lines of the gaseous constituents of the atmosphere add further com-
plexities. These effects are beyond the scope of the report.

BDL. THE ME REGIONS OF SCATTERING/DIFFRACTION

Mie theory demonstrates that the baAl-scattering/diffractive cross section of an object de-

pends, in general. on the object size, the dielectric properties of the material of which it is com-
posed and (1) on the ratio of the size of the object to the wavelength of radiation and (2) on the
ratio of the back-scattering cross section of the object (its "apparent size") to the actual cross-
sectional area of the object (its real size).

Mie, G. (1908) Beitrdge zur optik trfiber medien, speziell kolloidaler metallosungen. Ann. Phys.. 25:377-445 (Leipzig).
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Stratton26 (1941) accomplished the theoretical work that led to the presentation. by Kerr and

Goldstein' 7 (1951). of the summary diagram of Figure B I (which the author has modified to

express size in diameter terms, rather than radius). This diagram shows, for individual

(subscripted "i") spherical objects-cloud droplets herein-the dependence of the extinction ratio

k on the ratio of droplet diameter to radiative wavelength (where k. = a/A. that is. the extinction-

cross-section of the droplets a, divided by their cross-sectional area A). The three regions of the

Mie theory are indicated: (1) the Rayleigh Region, which is important to radar investigation of

water clouds, also rain. (2) the Mie Region, which is important in the "short microwave" and

infrared portions of the radiative spectrum, as concerns water clouds and rain, and (3) the Region

of Geometric Optics, where diffractive/reflective effects prevail, which are important to visibility

and lidar considerations of clouds and rain.

The dashed line of Figure B 1. is a plot of the "Rayleigh Law", that is,

=_ 877 N.D., 
(B 1)

which prevails in the region D/4 < -0.01.

B2. CLOUD SIZE-RANGE AND D/4 VALUES FOR VISIBLE LIGHT AND X-BAND RADAR

In Section 7. page 25, a basic assumption was made and explained, namely that two "tie

points" were established, the first specifying that the modal diameter. D'N, of the Khrgian-Mazin

distribution function, would be D', = 10 pm for a cloud liquid water content, M = 1.0 g m ", and

the second specifying that DN = 1 pm, at the restricted/non-restricted visibility boundary of

synoptic meteorology. This led to the D'N = 10 M 0.2` pm relation of Eq. (59). Moreover. in Section

9.4. page 57. the clear-air state of tie atmosphere was specified to exist when the visibility was

30 miles, the LWC (or aerosol mass content) was 7.43 x 10 ' g m 1̀ and the modal diameter,

through Eq. (59), was 0.5 pm. The smallest drops or particles of the population will be smaller

than the mode. A value of 0.2 pm is assumed, based on other work not reported. The maximum

LWC observed in clouds is about 2-4 g m:1, as noted previously. The modal diameter correspond-

ing to M = 4 g m-3 is 14.5 pm. from Eq. (59). When maximum LWC exists, the largest droplets at

the upper size end of the distributions will extend toward "large-drizzle" size, or about 200 p m.

Thus, it is assumed that the diameters of primary concern for D/X computations range from

about 0.2 to 200 pm.

2 Stratton, J.A. (1941) Electromagnetic Theory. McGraw-Hill. 563 pp.

27 Kerr, D.E., and Goldstein, H. (1951) Radar targets and echoes. Propagation of Short Radio Waves, 13. Chap. 6.
McGraw-Hill.

's Weast. R.C.. and Astle, M.J.. eds. (1982) Handbook ofChcmistnr. and Physics. CRC Press. Inc.. Boca Raton. Florida. A-
63. E-202.
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Questions relative to the Mie theory now shift (still considering visibility) to the wavelength(s)

of light that are predominantly involved in the processes of "human seeing". The processes are
numerous but it is assumed herein that the wavelength of major importance is the wavelength of
"maximum visibility", L = 0.556 min. as cited by Weast and Astle"' (1982).

From the cloud diameters cited and the wavelength of light, just assumed, it follows that the

D/X values germane to the diagram of Figure B 1 span the range

0.360 •_ D/, 5 360 N.D.. (B2)

This range is indicated at the bottom right of the figure by the horizontal line with arrows.

The double arrows pointing right emphasize that the D/X values extend beyond the diagram scale

and "well into" the region of geometric optics. Thus. the extinction/scattering effects of water-

clouds, involved in "visibility" and "visual-wavelength-lidar" are primarily diffractive/reflective,

with contributions of unknown amount due to secondary and multiple diffraction, reflection, and

scattering.

The volume reflectivity qi and radar reflectivity factor Z were discussed in Section 10 and

values from the KM equations were intercompared, for natural clouds, with the measurements of

Plank, Atlas and Paulsen713 (1955) and the equations of Atlas and BartnofW' (1953). A vertical-

pointing X-Band (now K,-Band) radar, = 1.25 cm, was used to obtain the measurements and

the comparison equations were solved for this same wavelength. The results are shown in Table

7.

For the range of cloud-droplet diameters to be anticipated in water clouds in the atmosphere,

stated above, and X = 1.25 cm.

2.88 x 10r 5 D/X _• 0.0288 N. D.. (B3)

This range is noted in Figure B 1. by the horizontal line with double arrows pointing left. The

figure reveals that the D/X values for X-Band radiation occur within the Rayleigh Region of the

Mie theory with some of the largest, drizzle-size droplets being in the Mie region. Hence, water-

clouds illuminated by radiation of 1.25 cm wavelength are primarily governed by the Rayleigh

Law. [The particular application of the Rayleigh Law to water hydrometeors has been discussed

by Mason6 5 (1971). Mason's equation is Eq. (14 1) herein.]

B3. D/Xi VALUES FOR WATER CLOUDS FOR OTHER RADIATIVE WAVELENGTHS

Additional comments are in order concerning the illumination of water clouds by radiative

wavelengths other than the ones just described. In Table B 1. the ranges of the D/X ratios for

water clouds are indicated in the last column, for radiative wavelengths spanning the ultraviolet

19 Weast. R.C.. and Astle. M.J.. eds. (1982) Handbook ofChemisiry and Physics. CRC Press. Inc.. Boca Raton. Florida. A-

63. E-202.

'6 Atlas. D.. and Bartnoff. S. (1953) Cloud visibility, radar reflectivity and drop-size distribution. J. Meteorol.. 10:143-148.

6. Mason. B.J. (1971) The Physics of Clouds. second edition. Clarendon Press. Oxford. England.
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to the long-microwave portion of the spectrum. The particularly troublesome wavelengths-those

involved in the oscillatory complexities of the Mie Region (0.02 _ l)/ •_ 0.7)-arc noted bv aster-

isks. Such complexities are confined primarily to infrared and "short microwave" wavelengths and

are especially severe (as can be seen comparing the D/X values of the table with Figure Hil) for

wavelengths of about 0.00353-0.32 cm (35.3-3200 pm). or 94-8500 Gttz (0.094-8.5T11tz]. A

single asterisk in the table indicates moderate involvement with Mie scattering; a double asterisk

denotes almost total involvement.

B4. COMMENTS

Since various references to aerosols (in the context of visibility) were made in the main text and

Appendix A. it is of interest to note the D/X ratios for these particles when illuminated by the wave-

lengths of Table B 1. Aerosols exist in a wide range of diameter sizes ranging from about 10 " to 10 pm.

The modal peak of number concentration typically occurs at 0.01 gm. It may be stated that for UV.

visible and IR illumination, the Mie Region is "crossed" by a portion of the size spectra of aerosols.

thus adding complexity. For microwave radiation, aerosols lie entirely in the Rayleigh Region.

Table B 1. D/X ratios for water clouds illuminated by radiative wavelengths ranging from Ultra-

violet to the long microwave. Asterisks indicate involvement in Mie scattering. The velocity of

light, v. is 3 x 1010 cm s-I = 3 x 1014 pm s-1 and frequency = v/X.

Description of Wavelength Frequency Range of Droplet-Diameter-

Illumination to-Wavelength Ratios

Ultraviolet
Solar Limit at

Earth's Surface 0.292 pm 1030 THz 1.23 < D/X•, 1230

Visible Light
Blue 0.46 pm 650 THz .783 < D/X < 783
Maximum Visibility 0.556 pm 540 Thz .647 < D/X. < 647
Yellow 0.58 pm 520 THz .621 <D/;<_ 621
Red 0.67 pm 450 THz .537 <D/X<s 537

Infrared
"* Terrestial Window I JAm 300 THz .360 s D/X5 360
"* 1Tpical Terrestlal

Outgoing 2 pm 150 THz .180 _5D/).< 180
Commonly Used
Wavelength 35.3 pm (.00353 cm) 8.5 THz (8500 GHz) .0102 5 D/X 5 10.2

Microwave_
**W-Band 0.32 cm (3200 pim) 94 GHz(0.094T-lz) 1.13 x 10-4 <D/X!, 0.113

*K9-Band 0.86 cm 35 GHz 4.19 x 10-5 <D/X< 0.0419
* K.-Band (formerly

part of X-Band) 1.25 cm 24 GHz 2.88 x 10-, < D/X:.< 0.0288
X-Band 3.2 cm 9.4 GHz 1,13 x 10- <D/X _ 0.0113
C-Band 6 5 GHz 6.00 x 10- <D/X•5 0.00600
S-Band 10 cm 3 GHz 3.60 x 10- !5 D/Xý 0.00360
L-Band 25 cm 1.2 GHz 1.44 x I0- <_ D/). _ 0.00144
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Appendix C

Trabert's Equation for a Monodispersed Cloud Population
and the Particular Solution of Stratton and Houghton

Many studies in the field of visibility have been based on the work of Stratton and Houghton 43

(1931), which used the concepts of Koschmieder29. I (1924a, 1924b) and led to their particular
modification of the equation of Trabert. 28

The general form of Trabert's equation was not known at the time but it is convenient to use
it as a discussion reference in this appendix. The equation, Eq. (48) of the main text, is

In ( /Q)
V m. (C1)

k,,A

where e is the "contrast quantity", k,, is the extinction ratio and A is the projected. cross-sectional
area of the cloud droplets along the visibility path.

As mentioned in the main text. Trabert's equation can be made "distribution specific", if we
have knowledge of A for any cloud size distribution of interest. Stratton and Houghton assumed a
monodispersed distribution.

43 Stratton. J.A.. and Houghton, H.G. (1931) A theoretical investigation of the transmission of light through fog. Phys.
Rev.. 38:159-165.

29 Koschmieder, H. (1924) Theorle der horizontalen sichtwette. Beitrfge zur physik derfreien atmosphdtre. XU:33-53.

10 Koschmleder. H. (1924b) Theone der horizontalen sichtweite II: kontrast und sichtweite. Beitrage zur physik derfreien
atmosphare. Xl: 171-181.

28 Trabert. Wilhelm (1901) Die extinction des Iichtes in einem truben medium (Schweite in wolken). Meteor. Z.. 18:518-525.
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CI. THE EQUATION FOR A MONODISPERSED CLOUD DISTRIBUTION AND THE
CORRESPONDING TRABERT EQUATION

The development of this equation follows the development of Stratton and Houghton. as

summarized succinctly by Aufm Kampe and Weickmann.4'

The cross-sectional area of any single droplet of a monodispersed population. Jor droplet

radius in m. is

a =ir nm2 . (C2)

If there are N droplets per mr1 (assume a cube I m on a side) the summed, projected cross-

sectional area of all droplets of the cube is

A = aN = 1rr 2N m-1. (C3)

The volume of any single droplet is

4 inr3

v = m3, (C4)
3

and its mass is

4-rrr3p.
m = vpw= g. (MC5

3

where p. is the density of water.

For the N droplets of the cube, the total mass of all droplets, which is the liquid water con-

tent. M, is

M=mN= 4-'pN g im3 . (C6)
3

If N is eliminated between Eqs. (C3) and (C6),

3 M
A = - m-. (C7)

With p, evaluated (p. = 106 g m3) and r expressed in lkm, this becomes

3 M 0.75 M
A = im-. (C8)

4r r

Aufm Kampe. H.J., and Welckmann. H.K. (19521 Trabert's formula and the determination of the water content in

clouds. d. Meteorol.. 9:167-171.
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When Eq. (C8) is substituted into the Trabert equation (C 1).

1.33 r In (l0E)
V = - - m. (C9)

k,,M

C2. THE STRATTON-HOUGHTON ASSUMPTIONS ABOUT E AND k AND THEIR FINAL
VERSION OF TRABERT'S EQUATION

Koschmleder (loc. cit.) determined that the effect of contrast on visibility was governed by In

(I/E), where E is the "contrast o' iantity'. He also determined that the threshold of contrast for a

"black body" was given by e = 0.02. or In (I/E) = 3.91.

Stratton and Houghton assumed that the E in Trabert's equation would have a constant value

equal to Koschmieder's threshold value for a black body. With this assumption, Eq. (C9) became

5.2r
V= m. (C I0)

k M

Their last assumption, based on the work of Mie'8 (1908) and Debye44 (1909). was that the

extinction ratio had the value k, = 2.0, hence modifying Eq. (C 10) to

2.6 rV= m*. (CIli)

M

This is their final, modified version of the Trabert equation which appears as Eq. (82) of the

main text and which was much employed in studies subsequent to Stratton and Houghton.

It is also of interest before closing to consider the question raised by Aufm Kampe and

Weickmann 49 (1952), namely, "what is the effect of spectral broadening on the Trabert constant?".

The development of the Trabert constant by Stratton and Houghton for a monodispersed distribu-

tion, as just demonstrated, may be compared directly with the "broader" Khrgian-Mazin distribu-

tion used in the visibility work of the present report. The procedure is the following.

Johnson2 (1954) has pointed out that there is no justification for this last assumption.

25 Johnson, J.C. (1954) Physical Meteorology. New York Technical Press, MIT and Wiley. 393.

"8 Mle. G. (1908) Beitrdge zur optik trOber medien, speziell kolloidaler metallosungen. Ann. Phys., 25:377-445 (Leipzig).

" Debye. P. (1909) Der lichtdruck auf kugeln von beliebigem material. Ann. Physik, 30:57-136.

49 Aufm Kampe. H.J., and Weickmann. H.K. (1952) Trabert's formula and the determination of the water content in
clouds. J. Meteorol., 9:167-17 1.
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When. in the Khrgian-Mazin form of the general Trabert equation. Eq. (501 of the main text.

the modal diameter. D', is expressed in ýim. rather than nim. and if a "modal radius", r' is

defined to replace the diameter, then Eq. (501. ignoring truncation, becomes

3.333r', In (I /El
V m. (C12)

k M

Since, for a monodispersed population. the r of Stratton-Houghton is the mode, that is.

r=r' jkm, {(C13)

this equation is directly comparable to their Eq. (C9) herein.

When the Koschmieder value of In (1 /E) = 3.91 is assumed as it was by Stratton and

Houghton. Eq. (C 12) reduces to

13.0 r' N

V m. (C 14)
k"M

which is comparable to their Eq. (C 10) herein.

Finally, also in accord with Stratton and Houghton, k,, is assumed to have the value 2.0.

Thus. Eq. (C 14) converts to the Trabert equation,

6.5 r'N
V= m, (C 15)

M

with the Trabert constant,

C = 6.5 g m- -•p•-'. (C 16)

This result certainly verifies the Aufm Kampe and Weickmann suspicion that spectral broadening

leads to a larger value of the Trabert constant. They also mentioned that, with spectral broaden-

ing, the constant would tend to increase from 2.6 to the 5.8 value obtained and utilized by

Richardson.4" The work of the present report, based on the highly descriptive distribution func-

tion of Khrgian and Mazin, shows that the Richardson value is not only equaled, it is exceeded!

" Richardson, L.F. (1919) Measurements of water in clouds. Proc. Roy. Soc. London. A. 96:19-31.
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Errata for Report PL-TR-91-2293 entitled

"IMPLICATIONS OF THE KHRGIAN-MAZIN DISTRIBUTION
FUNCTION FOR WATER CLOUDS AND DISTRIBUTION CONSISTENCIES

WITH AEROSOLS AND RAIN"

Due to the constraints of a terminating fiscal year with a potential loss of

publication funds, a final proofreading of this report became impossible. Thus, the author

agreed to having the report printed in the form existent on 15 September 1993 provided he

would be permitted to write an errata and have it mailed post facto to the 1500, or so,

institutions and persons on the distribution list. Such was agreed and the listing of residual

report errors is presented herein.

Concerning errors in the figures, the units of the ordinate scale of Fig 7 should read

M (gm"3 ) , not M, (gn-3 ) . The ordinate scale of Fig 17 should be gm- 3 , not gm3 ; the

abscissa scale should read size, s (m) not size s, (m) . The second isoline from the bottom

in the upper right diagram of the Fig 17 nomogram, which is presently unlabeled, should be

labeled 5 . The abscissa scale of Fig 18 should be object size, s not object size s.

References, in the Table of Contents, to pps 103, 107, 108 and 114 should be to,

instead, pps 98, 102, 103 and 109, respectively. Also, on pp iv, title of Appendix B, line 2,

VISIBILE should be VISIBLE.

With regard to equations, the existing d'N in Eqn 7 should read D'N and the m of

Eqn 57, requires replacement with M .

In the identification of references in the footnotes of the text, Ref 31, on page 22,

should read 51: 427-449 , not 15: 427-449. Also, Ref 37, which should appear at the

bottom of pp 103, is missing. However, it is included in the List of References.



Other errors in the text are as noted below:

Section Pae Paragraph Line(s) Should Read

4 11 6 7-8 under the curves to
the total areas under the
curves

4 11 7 6 ratio of white to
total areas shown visually

9.2 39 3 2 demonstrated

9.3 48 1 6 serendipitous

10.3 77 4 9 Missile

13 85 5 10 Air Force

A4 107 4 6 Joss, Thames, Waldvogel

Corrections to the Bibliography are: pp 161, 121h Reference, Levin, L.M.-should

read-functions of cloud droplets. Pp 168, 10th Reference, Nyberg, A.-should

read--Meddelander Communications. Pp 171, 14th Reference, Plank, V.G.--should

be-AFCRL/SAMS. Pp 172, 12 th Reference, line 1, Poljackova, E.A.-should

be--Glavnaya. Pp 172, 12Lh Reference, line 2, Poljackova, E.A.--should be--Observatoria.

Pp 177,20th Reference, line 2, Selby, J.E.A.-should be-Supplement Code.


